what is the remainder when $1!+2!+3!+4!+\cdots+45!$ is divided by 47?
Solution 1:
Just to compose table:
\begin{array}{|c|r|} \hline n! & \equiv \ldots (\bmod \:47) \\ \hline \\ 1! & 1 \\ 2! & 2\cdot 1 = 2 \\ 3! & 3 \cdot 2 = 6 \\ 4! & 4 \cdot 6 = 24 \\ 5! & 5 \cdot 24 = 120 \equiv 26 \\ 6! & 6 \cdot 26 = 156 \equiv 15 \\ 7! & 7 \cdot 15 = 105 \equiv 11 \\ \cdots \\ 44! & 44 \cdot 8 = 352 \equiv 23 \\ 45! & 45 \cdot 23 = 1035 \equiv 1 \\ \hline \end{array}
$45$ steps/rows in total.
Then to find sum: $S = 1+2+6+24+26+15+11+\ldots+23+1 = \color{#E0E0E0}{1052 \equiv 18 (\bmod \: 47)}$.
Here we use idea:
if $\qquad$ $k! \equiv s (\bmod \: p)$,
then $\;$ $(k+1)! \equiv (k+1)\cdot s (\bmod \: p)$,
and apply it step-by-step.
Solution 2:
If you write the sum backwards you get
$45! + 44! + 43! + ... + 1! = (((···(45+1)44+1)43+1)···+1)2+1$
This creates the sequence
$t_0 = 45, \quad t_{n+1} = (t_n+1)(t_0-n)$
where we wish to find the value of $t_{44}$
This will take $44$ multiplications and $88$ additions, which seems pretty efficient.
Doing the arithmetic modulo $47$, I got $t_{44} \equiv 18 \pmod{47}$.
n t[n] n t[n] n t[n] n t[n] n t[n]
0 45 9 44 18 38 27 46 36 18
1 3 10 24 19 27 28 0 37 11
2 31 11 4 20 42 29 16 38 37
3 28 12 24 21 45 30 20 39 40
4 14 13 1 22 24 31 12 40 17
5 36 14 15 23 33 32 28 41 25
6 33 15 10 24 9 33 19 42 31
7 23 16 37 25 12 34 32 43 17
8 42 17 30 26 12 35 1 44 18