changing sort in value_counts
Solution 1:
I think you need sort_index
, because the left column is called index
. The full command would be mt = mobile.PattLen.value_counts().sort_index()
. For example:
mobile = pd.DataFrame({'PattLen':[1,1,2,6,6,7,7,7,7,8]})
print (mobile)
PattLen
0 1
1 1
2 2
3 6
4 6
5 7
6 7
7 7
8 7
9 8
print (mobile.PattLen.value_counts())
7 4
6 2
1 2
8 1
2 1
Name: PattLen, dtype: int64
mt = mobile.PattLen.value_counts().sort_index()
print (mt)
1 2
2 1
6 2
7 4
8 1
Name: PattLen, dtype: int64
Solution 2:
As hinted by normanius’ comment under jezrael’s answer :
>>> df = pd.DataFrame({"a":[1,1,2,6,6,7,7,7,7,8]})
>>> df.a.value_counts()[df.a.unique()]
1 2
2 1
6 2
7 4
8 1
Name: a, dtype: int64
one can sort by any order by providing a custom index explicitely :
>>> df.a.value_counts()[[8,7,6,2,1]]
8 1
7 4
6 2
2 1
1 2
Name: a, dtype: int64
>>> df.a.value_counts()[[1,8,6,2,7]]
1 2
8 1
6 2
2 1
7 4
Name: a, dtype: int64
This is of particular interest for plotting categorical data :
>>> df.a.value_counts()[['hourly','daily','weekly','monthly']].plot(type="bar")
Anecdotically, it can be used to remove some entries or to make others appear several times :
>>> df.a.value_counts()[[1,1,1,8]]
1 2
1 2
1 2
8 1
Name: a, dtype: int64