Determine whether $f(x)={\sin x \over x}$ is uniformly continuous in $\mathbb R$

Determine whether the function$$f(x)={\sin x \over x}$$is uniformly continuous in $\mathbb{R}$.

I am using the definition that for $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$.


One has $$f(x):={\sin x\over x}=\int_0^1 \cos(\tau x)\ d\tau\ .$$ It follows that $$|f(x)-f(y)|\leq \int_0^1|\cos(\tau x)-\cos(\tau y)|\ d\tau\leq \int_0^1\tau |x-y|\ d\tau={1\over2}|x-y|\ .$$ This proves that $f$ is even Lipschitz-continuous.


The function $f$ has bounded derivative over $\Bbb R$, given by $$f'(x)=\frac{\cos x}{x}-\frac{\sin{x}}{x^2}$$

It is bounded for $x$ outside a neighborhood of $x=0$. Now note that by definition, the derivative at $0$ is $$\mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left( {\frac{{\sin h}}{h} - 1} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{\sin h - h}}{{{h^2}}} = \mathop {\lim }\limits_{h \to 0} \frac{{\cos h - 1}}{{2h}} = 0$$

by an application of L'Hôpital's rule. Thus $f'(0)=0$. Now, note that again $$\mathop {\lim }\limits_{x \to 0} f'(x) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{x\cos x - \sin x}}{{{x^2}}}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{ - x\sin x}}{{2x}} = 0$$ by L'Hopital. Thus $f'$ is continuous over the real line, and bounded. It follows $f$ is Lipschitz continuous, with constant $M=\sup_{x\in\Bbb R}|f'(x)|$


Hint:

  1. $\lim_{x \to \pm \infty} \frac{\sin x}{x} =0$;
  2. $f$ is continuous (I tacitly assume you have defined $f(0)=1$).

Use 1. to split $\mathbb{R} = (-\infty, - M ) \cup [-M,M] \cup (M,+\infty)$, and prove that $f$ is separately UC on each interval. For the middle one, you must know that continuity on a compact set implies uniform continuity.


This query has been used as a reference to justify voting to close a new query. However, the new query specifically requires that $~\epsilon, \delta~$ be employed. Therefore, I am filling the gap so that the new query is answered here.

Define $f(x)$ so that $~f(0) = 1,~~$ and for all $~\displaystyle x \neq 0, ~~f(x) = \frac{\sin ~x}{x} ~\implies$
[since $\lim_{x \to 0} ~f(x) ~= ~1$] $~f(x) ~$ is continuous everywhere.

I will employ an $\epsilon, \delta$ approach to demonstrate that $f$ is uniformly continuous throughout $\mathbb{R}.$ This answer will then constitute a stronger result than the OP in the new query is asking for.


To Prove

For any $~\epsilon > 0~$ there exists $~ \delta > 0 ~$ such that
$|~f(x) ~-~ f(y) ~| ~<~ \epsilon~$ whenever $~|~x ~-~ y ~| ~<~ \delta$.


Let $~g(x) ~\equiv ~x (\cos x) - (\sin x) ~\implies ~g(0) ~= ~0.$
Let $~h(x) ~\equiv ~(\sin x) ~- ~x (\cos x) ~- ~x^2 ~\implies ~h(0) ~= ~0.$
For any fixed value of $~x, ~$ and any variable value of $~\delta,$
$~~~~~~~~~~~~$let $~J_x(\delta) ~\equiv ~f(x) ~- ~f(x + \delta) ~- ~\delta ~\implies ~~J_x(0) ~= ~0.$
Let $~k(x) ~\equiv ~f(0) ~- ~f(x) ~- ~x ~\implies ~k(0) ~= ~0.$
Let $~m(x) ~\equiv ~(\sin ~x) ~- ~x ~\implies ~m(0) ~= ~0.$


$\underline{\textbf{Lemma 1:}}$
$-\pi/2 ~< ~x ~< ~0 ~\implies ~g(x) ~> ~0 ~~$ and
$0 ~< ~x ~< ~\pi/2 ~\implies ~g(x) ~< ~0.$
$\underline{\text{Proof:}}$
$g'(x) ~= ~x (-\sin ~x) ~+ ~(\cos ~x) ~- ~(\cos ~x) ~= ~-x (\sin ~x).$
Therefore,
for $~-\pi/2 ~< ~x ~< ~0, ~g(x) ~$ is strictly decreasing $~~$and
for $~0 ~< ~x ~< ~\pi/2, ~g(x) ~$ is strictly decreasing.

$\underline{\textbf{Lemma 2:}}$
For $-\pi/2 ~< ~x ~< ~0, ~f(x) ~$ is strictly increasing $~~$ and
for $~0 ~< ~x ~< ~\pi/2, ~f(x) ~$ is strictly decreasing.
$\underline{\text{Proof:}}$
For $\displaystyle ~x ~\neq ~0, ~f'(x) ~= ~\frac{x (\cos ~x) ~- ~(\sin ~x)}{x^2} ~= ~\frac{g(x)}{x^2}.$
Invoke Lemma 1.

$\underline{\textbf{Lemma 3:}}$
For $0 ~< ~x, ~h(x) ~< ~0 ~~$ and
for $~x ~< ~0, ~h(x) ~< ~0.$
$\underline{\text{Proof:}}$
$h'(x) ~= (\cos ~x) ~+ ~x(\sin ~x) ~- ~(\cos ~x) ~- ~2x$
$= ~x(\sin ~x) ~- ~2x ~= x(\sin ~x - 2).$
Noting that $~h(0) ~= ~0,$
for $~x ~< ~0, ~h(x) ~$ is strictly increasing $~~$ and
for $~x ~> ~0, ~h(x) ~$ is strictly decreasing.

$\underline{\textbf{Lemma 4:}}$
For $~0 ~< ~x, ~0 ~< ~\delta, ~J_x(\delta) < 0.$
$\underline{\text{Proof:}}$
$\displaystyle ~J_x(\delta) ~= ~\frac{\sin ~x}{x} ~- ~~\frac{\sin ~(x + \delta)}{x + \delta} ~- ~\delta ~\implies$

$\displaystyle ~\frac{d ~J_x(\delta)}{d ~\delta} ~= ~- ~\frac{(x + \delta) (\cos[x + \delta]) ~- ~(\sin[x + \delta])} {(x + \delta)^2} ~- ~1$

$\displaystyle ~= ~\frac{(\sin[x + \delta]) ~- ~(x + \delta)(\cos[x + \delta]) ~- ~(x + \delta)^2}{(x + \delta)^2}$

$\displaystyle ~= ~\frac{h(x + \delta)}{(x + \delta)^2}.$

Invoke Lemma 3, noting that $~J_x(0) ~= ~0.$

$\underline{\textbf{Lemma 5:}}$
For $~0 ~< ~x ~< \pi/2, ~k(x) < 0.$
$\underline{\text{Proof:}}$
Since $~f(0) ~= ~1, ~k(x) ~= ~1 ~- ~f(x) ~- ~x.$

By the analysis in the proof to Lemma 2,
$\displaystyle k'(x) ~= ~- ~\frac{g(x)}{x^2} ~- ~1 ~= ~\frac{h(x)}{x^2}.$

By Lemma 3, this implies that for $0 ~< ~x ~< \pi/2, ~k'(x) < 0.$
Noting that $~k(x) ~= ~0, ~$ the Lemma is proven.

$\underline{\textbf{Lemma 6:}}$
For $~0 ~< ~x, ~m(x) < 0.$
$\underline{\text{Proof:}}$
$m'(x) ~= ~(\cos ~x) ~- ~1 ~\implies$
for $~x ~< ~\pi/2, ~m'(x)~$ is strictly negative.
Thereafter, $~m'(x)~$ is never $~> ~0.$
Therefore, with $~m(0) = 0, ~m(x)$
is strictly decreasing on $~(0, ~\pi/2)~$ and
thereafter, is strictly non-increasing.

$\underline{\text{Identity 7:}}$
For $~0 ~< ~|a - b| ~< ~(\pi/4),$

$\displaystyle |(\sin ~a) ~- ~(\sin ~b)| ~= ~2\left|\left(\sin\frac{a - b}{2}\right) ~\left(\cos\frac{a + b}{2}\right)\right|$

$\displaystyle \leq ~2\left|\left(\sin\frac{a - b}{2}\right) \right|$

$\displaystyle = ~2 \times \left(\sin ~\left|\frac{a - b}{2}\right|\right) ~< ~\text{[by Lemma 6]} ~|a - b|.$


WLOG $~x ~< ~y.$
Set $\displaystyle ~\delta = \min\left[\left(\frac{\pi}{4} \times \epsilon/2\right), ~\left(\pi/4\right)\right] ~\implies \frac{\delta}{\pi/4} ~< ~(\epsilon/2).$

Note that $~\forall ~x, ~f(x) ~= ~f(-x). ~$ Assume that $~|x - y| ~< ~\delta.$

$\underline{\text{Case 1:} ~~x ~< ~0 ~\leq ~y}$
$|f(x) - f(y)| ~\leq ~|f(x) - f(0)| ~+ |f(0) - f(y)|~$
$= ~|f(-x) - f(0)| ~+ ~|f(0) - f(y)|.$
By Lemma 5, each of the two terms in the line above is $~< ~\delta.$
Therefore, their sum is less than $~\epsilon.$

$\underline{\text{Case 2:} ~~x ~= ~0 ~< ~y}$
By Lemma 5, $~|f(x) - f(y)| ~< ~\delta ~< ~\epsilon.$

$\underline{\text{Case 3:} ~~0 ~< ~x ~< ~\pi/4 ~~~~ \text{and} ~~~~x ~< ~y}$
Let $~\alpha ~= ~(y - x) ~\implies ~\alpha ~< ~\delta.$
Then, by Lemma 4,
$~|f(x) - f(y)| ~= ~J_x(\alpha) ~+ ~\alpha ~< ~\alpha ~< ~\delta ~< ~\epsilon.$

$\underline{\text{Case 4:} ~~\pi/4 ~\leq ~x ~< ~y}$
Let $~\alpha ~= ~(y - x) ~\implies ~\alpha ~< ~\delta.$

$\displaystyle |f(x) - f(y)| ~= ~\left|\frac{\sin ~x}{x} ~- ~\frac{\sin ~y}{y}\right|$

$\displaystyle = ~\left|\frac{\sin ~x}{x} ~- \frac{\sin ~x}{y} ~+ \frac{\sin ~x}{y} ~- ~\frac{\sin ~y}{y}\right|$

$\displaystyle \leq ~\left|\frac{\sin ~x}{x} ~- \frac{\sin ~x}{y}\right| ~+ ~\left|\frac{\sin ~x}{y} ~- ~\frac{\sin ~y}{y}\right|.$

Using Lemma 6,

$\displaystyle ~ \left|\frac{\sin ~x}{x} ~- \frac{\sin ~x}{y}\right| ~= \left(\frac{1}{x} - \frac{1}{y}\right) ~|\sin ~x|$

$\displaystyle < ~\left(\frac{y - x}{xy}\right) \times (x) ~= ~\frac{\alpha}{y} ~< ~\frac{\delta}{\pi/4} ~< ~\frac{\epsilon}{2}.$

Using Identy 7,

$\displaystyle \left|\frac{\sin ~x}{y} ~- ~\frac{\sin ~y}{y}\right| ~= ~\left(\frac{1}{y}\right) \times \left|\sin ~x ~- ~\sin ~y\right|$

$\displaystyle < ~\left(\frac{1}{\pi/4}\right) \times (\alpha) ~< ~\frac{\delta}{\pi/4} < \frac{\epsilon}{2}.$

Thus, $~|f(x) - f(y)| ~< ~\epsilon.$

$\underline{\text{Case 5:} ~~x ~< ~y ~\leq ~0}$
Since $~f(x) = f(-x), ~|f(x) - f(y)| ~= ~|f(-x) - f(-y)| .$
Therefore, Case 5 is proven by Cases 2 through 4, collectively.