How to predict input image using trained model in Keras?

Solution 1:

If someone is still struggling to make predictions on images, here is the optimized code to load the saved model and make predictions:

# Modify 'test1.jpg' and 'test2.jpg' to the images you want to predict on

from keras.models import load_model
from keras.preprocessing import image
import numpy as np

# dimensions of our images
img_width, img_height = 320, 240

# load the model we saved
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# predicting images
img = image.load_img('test1.jpg', target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)

images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print classes

# predicting multiple images at once
img = image.load_img('test2.jpg', target_size=(img_width, img_height))
y = image.img_to_array(img)
y = np.expand_dims(y, axis=0)

# pass the list of multiple images np.vstack()
images = np.vstack([x, y])
classes = model.predict_classes(images, batch_size=10)

# print the classes, the images belong to
print classes
print classes[0]
print classes[0][0]

Solution 2:

You can use model.predict() to predict the class of a single image as follows [doc]:

# load_model_sample.py
from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import os


def load_image(img_path, show=False):

    img = image.load_img(img_path, target_size=(150, 150))
    img_tensor = image.img_to_array(img)                    # (height, width, channels)
    img_tensor = np.expand_dims(img_tensor, axis=0)         # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels)
    img_tensor /= 255.                                      # imshow expects values in the range [0, 1]

    if show:
        plt.imshow(img_tensor[0])                           
        plt.axis('off')
        plt.show()

    return img_tensor


if __name__ == "__main__":

    # load model
    model = load_model("model_aug.h5")

    # image path
    img_path = '/media/data/dogscats/test1/3867.jpg'    # dog
    #img_path = '/media/data/dogscats/test1/19.jpg'      # cat

    # load a single image
    new_image = load_image(img_path)

    # check prediction
    pred = model.predict(new_image)

In this example, a image is loaded as a numpy array with shape (1, height, width, channels). Then, we load it into the model and predict its class, returned as a real value in the range [0, 1] (binary classification in this example).

Solution 3:

keras predict_classes (docs) outputs A numpy array of class predictions. Which in your model case, the index of neuron of highest activation from your last(softmax) layer. [[0]] means that your model predicted that your test data is class 0. (usually you will be passing multiple image, and the result will look like [[0], [1], [1], [0]] )

You must convert your actual label (e.g. 'cancer', 'not cancer') into binary encoding (0 for 'cancer', 1 for 'not cancer') for binary classification. Then you will interpret your sequence output of [[0]] as having class label 'cancer'