Prove: $\Phi^{-1}(e_2)$ is a subgroup of $G_1$, where $e_2$ is the unit element of $G_2$. [closed]
Suppose $(G_1, \circ)$ and $(G_2, *)$ are both groups:
$\Phi: G1\to G2$, $\Phi$ is surjective and $\forall a,b \in G_1$ has:
$$\Phi(a\circ b)= \Phi(a)* \Phi(b)$$
Prove: $\Phi^{-1}(e_2)$ is a subgroup of $G_1$, where $e_2$ is the unit element of $G_2$.
Solution 1:
$\phi : G_1 \to G_2 $ be an homomorphism.
Then, \begin{align} \phi^{-1}(e_2)&=\{g\in G : \phi(g)\in \{e_2\} \} \\ &=Ker(\phi)\end{align}
To show, $Ker(\phi) \le G_1$
Choose, $a, b\in Ker(\phi) $
Then, $\phi(ab^{-1} ) = \phi(a)\phi(b)^{-1}=e_2$
Hence, $ab^{-1} \in Ker(\phi) $
This implies $\phi^{-1}(e_2) \le G_1$
Not only subgroup , it is a normal subgroup of $G_1$ and the proof is not difficult.
Note: $\phi $ need not be onto homomorphism to the above proof. Since, any homomorphism from $G_1$ to $G_2$ map $e_{G_1}$ to $e_{G_2}$.