Python "TypeError: unhashable type: 'slice'" for encoding categorical data
I am getting
TypeError: unhashable type: 'slice'
when executing the below code for encoding categorical data in Python. Can anyone please help?
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('50_Startups.csv')
y=dataset.iloc[:, 4]
X=dataset.iloc[:, 0:4]
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 3] = labelencoder_X.fit_transform(X[:, 3])
Solution 1:
X
is a dataframe and can't be accessed via slice terminology like X[:, 3]
. You must access via iloc
or X.values
. However, the way you constructed X
made it a copy... so. I'd use values
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
# dataset = pd.read_csv('50_Startups.csv')
dataset = pd.DataFrame(np.random.rand(10, 10))
y=dataset.iloc[:, 4]
X=dataset.iloc[:, 0:4]
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
# I changed this line
X.values[:, 3] = labelencoder_X.fit_transform(X.values[:, 3])
Solution 2:
use Values either while creating variable X or while encoding as mentioned above
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
# dataset = pd.read_csv('50_Startups.csv')
dataset = pd.DataFrame(np.random.rand(10, 10))
y=dataset.iloc[:, 4].values
X=dataset.iloc[:, 0:4].values
Solution 3:
While creating the matrix X
and Y
vector use values
.
X=dataset.iloc[:,4].values
Y=dataset.iloc[:,0:4].values
It will definitely solve your problem.
Solution 4:
if you use .Values while creating the matrix X and Y vectors it will fix the problem.
y=dataset.iloc[:, 4].values
X=dataset.iloc[:, 0:4].values
when you use .Values it creates a Object representation of the created matrix will be returned with the axes removed. Check the below link for more information
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.values.html