What are the minimum and maximum of $f(x) = x^6 - 5x^4 + 5x^2 - 1$?
I am stuck in obtaining the critical points:
$f'(x) = 6x^5 - 20x^3 + 10x$
$f''(x) = 30x^4 - 60x^2 + 10$
For critical points, we have: $f'(x) = 0$
$2x(3x^4 - 10x^2 + 5) = 0$
Now, how should i solve them to get the critical points. And what should the minima and maxima of the given function be at the end?
Note the symmetry of coefficients:
$\displaystyle {f(x) \over x^3} = (x^3-{1\over x^3}) - 5·(x-{1\over x}) = (x-{1\over x})^3 - 2·(x-{1\over x}) $
This suggested we can simplify, letting $u = x^2-1$
$f(x) = g(u) = u^3 - 2u^2 - 2u$
For extremum, just solve $g'(u) = 0$, then, back solve for x