Prove that $\int_{0}^{1} \frac{\ln(x)}{x-1} dx = \sum_{k=1}^{\infty} \frac{1}{k^2}$
Solution 1:
It's a nice approach. The only thing I would clean up a bit:
When applying the Weierstrass M-test, use the fact that
$ \sum_{k=1}^{\infty} \left|-\frac{(-1)^{k-1}(\beta-1)^{k}}{k^2 }\right|\leq \sum_{k=1}^{\infty} \frac{1}{k^2 }<\infty$
so that the sum is dominated by a sum that's independent of $\beta$. Then the limit as $\beta \to 0^+$ may proceed.
Solution 2:
Substitute $x=1-t$
$$-\int_{0}^{1}\frac{\ln(1-t)}{t}dt=\int_{0}^{1}\sum_{r=1}^{\infty}\frac{t^{r}}{tr}dt=\\\int_{0}^{1}\sum_{r=1}^{\infty}\frac{t^{r-1}}{r}dt=\\\sum_{r=1}^{\infty}\int_{0}^{1}\frac{t^{r-1}}{r}dt=\sum_{r=1}^{\infty}\frac{1}{r^{2}}=\zeta(2)$$.
For justification of interchange of summation and integral see this
Solution 3:
By definition $$\sum_{k=1}^{\infty}(-1)^{k} \frac{(\beta-1)^{k}}{k^2 }=\text{Li}_2(1-\beta )$$ If $\beta$ is small $$\text{Li}_2(1-\beta )=\zeta(2)+\beta \log \left(\frac{\beta }{e}\right)+O\left(\beta ^2\right)$$