Solution 1:

The substitution $u=\cot(a/2)\cot(b/2)$ yields $$I(a)=\int_{\pi-a}^\pi\arccos\left(\cot\frac a2\cot\frac b2\right)\sin b\,db=\int_0^1\frac{4u\tan^2(a/2)\arccos u}{(1+u^2\tan^2(a/2))^2}\,du$$ so that $$P(\sigma>\pi)=\frac1{4\pi}\int_0^\pi I(a)\sin a\,da=\frac4\pi\int_0^{\pi/2}J(a)\sin^2a\tan a\,da$$ where $\displaystyle J(a)=\int_0^1\frac{u\arccos u}{(1+u^2\tan^2a)^2}\,du$. Integration by parts yields \begin{align}J(a)&=-\frac{\arccos u}{2(1+u^2\tan^2a)\tan^2a}\bigg\vert_0^1-\frac1{2\tan^2a}\int_0^1\frac{du}{(1+u^2\tan^2a)\sqrt{1-u^2}}\\&=\frac\pi{4\tan^2a}-\frac1{2\tan^2a}\cdot\frac\pi{2\sqrt{\tan^2a+1}}\\&=\frac{\pi(1-\cos a)}{4\tan^2a}\end{align} where the last integral is evaluated by taking $t=u/\sqrt{1-u^2}$. Therefore, \begin{align}P(\sigma>\pi)=\int_0^{\pi/2}(1-\cos a)\sin a\cos a\,da=\frac16.\end{align} Not sure if there is a quicker geometrical answer.