Does this series converges? Ratio Test, Factorial Numerator and exponential Denominator
$\displaystyle \sum_{k=0}^\infty \frac{A k!}{B k^k}$ where $A, \, B > 0$
Does this series converges?
If A is different than B, then it obviously converges with the ratio test.
But with $ A = B $. How would I know it converges?
So being more precise, does $\displaystyle \sum_{k=0}^\infty \frac{k!}{k^k}$ converges? ( Because in this way, the ratio test gives $1^-$, which is inconclusive )
Solution 1:
If $A, B > 0$ then the sum converges. Namely, it's a serie defintely non-negative. Let: $$a_n=\frac{A}{B}\cdot\frac{n!}{n^n}$$ We can use the root citeria. We have: $$\lim_{n\to +\infty}\sqrt[n]{\frac{A}{B}\cdot\frac{n!}{n^n}}=\lim_{n\to +\infty}\sqrt[n]{\frac{A}{B}}\cdot\lim_{n\to +\infty}\sqrt[n]{\frac{n!}{n^n}}$$
In my previous post, I've showned that:
$$\lim_{n\to +\infty}\sqrt[n]{\frac{n!}{n^n}}=\frac{1}{e}$$
So:
$$\lim_{n\to +\infty}\sqrt[n]{\frac{A}{B}\cdot\frac{n!}{n^n}}=\lim_{n\to +\infty}\sqrt[n]{\frac{A}{B}}\cdot\lim_{n\to +\infty}\sqrt[n]{\frac{n!}{n^n}}=0^+$$
Thus, the series converges.
Solution 2:
Yes, the sum converges. It can be proved using the direct comparison test.
We can prove that for $k>5$, $$\frac1{k^2} > \frac{k!}{k^k}$$ and since the sum over $1/k^2$ converges, the same can be said for $k!/k^k$.
Hope that's convincing.