Is there a closed a form for $\sum_{n=1}^\infty\frac{(-1)^{n-1}H_{an}}{n}\,?$
I am wondering if there is a closed form for
$$\sum_{n=1}^\infty\frac{(-1)^{n-1}H_{an}}{n},$$
Where $a$ is positive real.
The integral representation of this sum is
$$a\zeta(2)+a\int_0^1\frac{\ln(1-x)}{x(1+x^a)}dx.$$
I encountered this sum while trying to generalize $\displaystyle\int_0^1 \frac{\ln \left( 1+x^{2+\sqrt{3}}\right)}{1+x}dx$ to $\displaystyle\int_0^1 \frac{\ln \left( 1+x^{a}\right)}{1+x}dx.$
Thanks,
A proof for $$\sum_{n=1}^{\infty} (-1)^{n-1}\frac{H_{2n}}{n} =\frac{5\pi^2}{48}-\frac14 \ln^22$$ can be found at Evaluating $\sum_{n=1}^{\infty} (-1)^{n-1}\frac{H_{2n}}{n}$, and in a comment there Omram Kouba provides the general result
$$\sum_{n=1}^\infty(-1)^{n-1}\frac{H_{an}}{n}$$
via link to their paper: http://arxiv.org/abs/1010.1842. Specifically, it is there shown that: $$\sum_{n=1}^\infty(-1)^{n-1}\frac{H_{an}}{n} = \frac{(a^2+1)\pi^2}{24a} - \frac{1}{2} \sum_{j=0}^{a-1} \log^2\left(2 \sin \frac{(2j+1)\pi}{2a} \right)$$