interior of $]-5, 0]\cup\left\{ \frac{1}{n}: n \geq1 \right\} \cup \{2,4\} $
My question about the interior of $A=]-5, 0]\cup\left\{ \frac{1}{n}: n \geq1 \right\} \cup \{2,4\} $
Let $A_1=]-5, 0]$, $A_2=\left\{ \frac{1}{n}: n\geq1 \right\}$ and $A_3=\{2,4\}$
$\mathring{A_1}=]-5, 0[$.
$A_2=\left\{ \frac{1}{n}: n\geq1 \right\}$ contains no open sets, and thus the interior $\mathring{A_2}=\emptyset$.
$A_3= \{2,4\} $ contains no open sets, and thus the interior $\mathring{A_3}=\emptyset$.
So we have $\mathring{A_1}\cup \mathring{A_2}\cup \mathring{A_3}=]-5, 0[$
Since $A=]-5, 0]\cup\left\{ \frac{1}{n}: n \geq1 \right\} \cup \{2,4\}=A_1\cup A_2\cup A_3$
And $\mathring{A}=\mathring{\overbrace{A_1\cup A_2\cup A_3}}$
But we don't have $\mathring{A_1}\cup \mathring{A_2}\cup \mathring{A_3}=\mathring{\overbrace{A_1\cup A_2\cup A_3}}$
How can I find $\mathring{A}$?
Any help will be appreciated.
Solution 1:
$\mathring{A}\cup \mathring{B}=\mathring{\overbrace{A \cup B}}$
In general the above result is not true.
For example.
$\mathring{\mathbb{Q}}\cup \mathring{({\mathbb{R}\setminus \mathbb{Q}})}\neq \mathring{\mathbb{R} }$
But in your question $\delta(A_1) \cap \delta {(A_2})\cap {\delta(A_3)}=\emptyset$
Where, $\delta({A}) =bdd(A) $
And rest of your proof is ok.
Solution 2:
Just note that $(-5,0)$ is open and the other points of $A$, $0$,$-5$, the $\frac1n$ and $0$ and $2$ all are non-interior to $A$ because all their resp neighbourhoods contain points outside of $A$.
Those observations are enough to conclude that the interior of $A$ is $(-5,0)$. The division in parts is not needed at all.