Fourier Transform of Derivative
A simpler way, using the anti-transform:
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \, e^{i \omega t} d\omega$$
$$f'(t) = \frac{d}{dt}\!\left( \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \, e^{i \omega t} d\omega \right)= \frac{1}{2\pi} \int_{-\infty}^{\infty} i \omega \, F(\omega) \, e^{i \omega t} d\omega$$
Hence the Fourier transform of $f'(t)$ is $ i \omega \, F(\omega)$
The Fourier transform of the derivative is (see, for instance, Wikipedia) $$ \mathcal{F}(f')(\xi)=2\pi i\xi\cdot\mathcal{F}(f)(\xi). $$
Why?
Use integration by parts: $$ \begin{align*} u&=e^{-2\pi i\xi t} & dv&=f'(t)\,dt\\ du&=-2\pi i\xi e^{-2\pi i\xi t}\,dt & v&=f(t) \end{align*} $$ This yields $$ \begin{align*} \mathcal{F}(f')(\xi)&=\int_{-\infty}^{\infty}e^{-2\pi i\xi t}f'(t)\,dt\\ &=e^{-2\pi i\xi t}f(t)\bigr\vert_{t=-\infty}^{\infty}-\int_{-\infty}^{\infty}-2\pi i\xi e^{-2\pi i \xi t}f(t)\,dt\\ &=2\pi i\xi\cdot\mathcal{F}(f)(\xi) \end{align*} $$ (The first term must vanish, as we assume $f$ is absolutely integrable on $\mathbb{R}$.)