How to inspect a Tensorflow .tfrecord file?
I have a .tfrecord
but I don't know how it is structured. How can I inspect the schema to understand what the .tfrecord
file contains?
All Stackoverflow answers or documentation seem to assume I know the structure of the file.
reader = tf.TFRecordReader()
file = tf.train.string_input_producer("record.tfrecord")
_, serialized_record = reader.read(file)
...HOW TO INSPECT serialized_record...
Solution 1:
Found it!
import tensorflow as tf
for example in tf.python_io.tf_record_iterator("data/foobar.tfrecord"):
print(tf.train.Example.FromString(example))
You can also add:
from google.protobuf.json_format import MessageToJson
...
jsonMessage = MessageToJson(tf.train.Example.FromString(example))
Solution 2:
Above solutions didn't work for me so for TF 2.0 use this:
import tensorflow as tf
raw_dataset = tf.data.TFRecordDataset("path-to-file")
for raw_record in raw_dataset.take(1):
example = tf.train.Example()
example.ParseFromString(raw_record.numpy())
print(example)
https://www.tensorflow.org/tutorials/load_data/tfrecord#reading_a_tfrecord_file_2
Solution 3:
If your .tftrecord
contains SequenceExample, the accepted answer won't show you everything. You can use:
import tensorflow as tf
for example in tf.python_io.tf_record_iterator("data/foobar.tfrecord"):
result = tf.train.SequenceExample.FromString(example)
break
print(result)
This will show you the content of the first example.
Then you can also inspect individual Features using their keys:
result.context.feature["foo_key"]
And for FeatureLists:
result.feature_lists.feature_list["bar_key"]
Solution 4:
Use TensorFlow tf.TFRecordReader
with the tf.parse_single_example
decoder as specified in https://www.tensorflow.org/programmers_guide/reading_data
PS, tfrecord contains 'Example' records defined in https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/example.proto
Once you extract the record into a string, parsing it is something like this
a=tf.train.Example()
result = a.ParseFromString(binary_string_with_example_record)
However, I'm not sure where's the raw support for extracting individual records from a file, you can track it down in TFRecordReader
Solution 5:
If it's an option to install another Python package, tfrecord_lite is very convenient.
Example:
In [1]: import tensorflow as tf
...: from tfrecord_lite import decode_example
...:
...: it = tf.python_io.tf_record_iterator('nsynth-test.tfrecord')
...: decode_example(next(it))
...:
Out[1]:
{'audio': array([ 3.8138387e-06, -3.8721851e-06, 3.9331076e-06, ...,
-3.6526076e-06, 3.7041993e-06, -3.7578957e-06], dtype=float32),
'instrument': array([417], dtype=int64),
'instrument_family': array([0], dtype=int64),
'instrument_family_str': [b'bass'],
'instrument_source': array([2], dtype=int64),
'instrument_source_str': [b'synthetic'],
'instrument_str': [b'bass_synthetic_033'],
'note': array([149013], dtype=int64),
'note_str': [b'bass_synthetic_033-100-100'],
'pitch': array([100], dtype=int64),
'qualities': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64),
'sample_rate': array([16000], dtype=int64),
'velocity': array([100], dtype=int64)}
You can install it by pip install tfrecord_lite
.