Apply a function to every row of a matrix or a data frame

You simply use the apply() function:

R> M <- matrix(1:6, nrow=3, byrow=TRUE)
R> M
     [,1] [,2]
[1,]    1    2
[2,]    3    4
[3,]    5    6
R> apply(M, 1, function(x) 2*x[1]+x[2])
[1]  4 10 16
R> 

This takes a matrix and applies a (silly) function to each row. You pass extra arguments to the function as fourth, fifth, ... arguments to apply().


In case you want to apply common functions such as sum or mean, you should use rowSums or rowMeans since they're faster than apply(data, 1, sum) approach. Otherwise, stick with apply(data, 1, fun). You can pass additional arguments after FUN argument (as Dirk already suggested):

set.seed(1)
m <- matrix(round(runif(20, 1, 5)), ncol=4)
diag(m) <- NA
m
     [,1] [,2] [,3] [,4]
[1,]   NA    5    2    3
[2,]    2   NA    2    4
[3,]    3    4   NA    5
[4,]    5    4    3   NA
[5,]    2    1    4    4

Then you can do something like this:

apply(m, 1, quantile, probs=c(.25,.5, .75), na.rm=TRUE)
    [,1] [,2] [,3] [,4] [,5]
25%  2.5    2  3.5  3.5 1.75
50%  3.0    2  4.0  4.0 3.00
75%  4.0    3  4.5  4.5 4.00

Here is a short example of applying a function to each row of a matrix. (Here, the function applied normalizes every row to 1.)

Note: The result from the apply() had to be transposed using t() to get the same layout as the input matrix A.

A <- matrix(c(
  0, 1, 1, 2,
  0, 0, 1, 3,
  0, 0, 1, 3
), nrow = 3, byrow = TRUE)

t(apply(A, 1, function(x) x / sum(x) ))

Result:

     [,1] [,2] [,3] [,4]
[1,]    0 0.25 0.25 0.50
[2,]    0 0.00 0.25 0.75
[3,]    0 0.00 0.25 0.75

First step would be making the function object, then applying it. If you want a matrix object that has the same number of rows, you can predefine it and use the object[] form as illustrated (otherwise the returned value will be simplified to a vector):

bvnormdens <- function(x=c(0,0),mu=c(0,0), sigma=c(1,1), rho=0){
     exp(-1/(2*(1-rho^2))*(x[1]^2/sigma[1]^2+
                           x[2]^2/sigma[2]^2-
                           2*rho*x[1]*x[2]/(sigma[1]*sigma[2]))) * 
     1/(2*pi*sigma[1]*sigma[2]*sqrt(1-rho^2))
     }
 out=rbind(c(1,2),c(3,4),c(5,6));

 bvout<-matrix(NA, ncol=1, nrow=3)
 bvout[] <-apply(out, 1, bvnormdens)
 bvout
             [,1]
[1,] 1.306423e-02
[2,] 5.931153e-07
[3,] 9.033134e-15

If you wanted to use other than your default parameters then the call should include named arguments after the function:

bvout[] <-apply(out, 1, FUN=bvnormdens, mu=c(-1,1), rho=0.6)

apply() can also be used on higher dimensional arrays and the MARGIN argument can be a vector as well as a single integer.