Pandas dataframe groupby plot

Simple plot,

you can use:

df.plot(x='Date',y='adj_close')

Or you can set the index to be Date beforehand, then it's easy to plot the column you want:

df.set_index('Date', inplace=True)
df['adj_close'].plot()

If you want a chart with one series by ticker on it

You need to groupby before:

df.set_index('Date', inplace=True)
df.groupby('ticker')['adj_close'].plot(legend=True)

enter image description here


If you want a chart with individual subplots:

grouped = df.groupby('ticker')

ncols=2
nrows = int(np.ceil(grouped.ngroups/ncols))

fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(12,4), sharey=True)

for (key, ax) in zip(grouped.groups.keys(), axes.flatten()):
    grouped.get_group(key).plot(ax=ax)

ax.legend()
plt.show()

enter image description here


Similar to Julien's answer above, I had success with the following:

fig, ax = plt.subplots(figsize=(10,4))
for key, grp in df.groupby(['ticker']):
    ax.plot(grp['Date'], grp['adj_close'], label=key)

ax.legend()
plt.show()

This solution might be more relevant if you want more control in matlab.

Solution inspired by: https://stackoverflow.com/a/52526454/10521959