What is the difference between task and thread?

In C# 4.0, we have Task in the System.Threading.Tasks namespace. What is the true difference between Thread and Task. I did some sample program(help taken from MSDN) for my own sake of learning with

Parallel.Invoke 
Parallel.For 
Parallel.ForEach 

but have many doubts as the idea is not so clear.

I have initially searched in Stackoverflow for a similar type of question but may be with this question title I was not able to get the same. If anyone knows about the same type of question being posted here earlier, kindly give the reference of the link.


Solution 1:

In computer science terms, a Task is a future or a promise. (Some people use those two terms synonymously, some use them differently, nobody can agree on a precise definition.) Basically, a Task<T> "promises" to return you a T, but not right now honey, I'm kinda busy, why don't you come back later?

A Thread is a way of fulfilling that promise. But not every Task needs a brand-new Thread. (In fact, creating a thread is often undesirable, because doing so is much more expensive than re-using an existing thread from the thread pool. More on that in a moment.) If the value you are waiting for comes from the filesystem or a database or the network, then there is no need for a thread to sit around and wait for the data when it can be servicing other requests. Instead, the Task might register a callback to receive the value(s) when they're ready.

In particular, the Task does not say why it is that it takes such a long time to return the value. It might be that it takes a long time to compute, or it might be that it takes a long time to fetch. Only in the former case would you use a Thread to run a Task. (In .NET, threads are freaking expensive, so you generally want to avoid them as much as possible and really only use them if you want to run multiple heavy computations on multiple CPUs. For example, in Windows, a thread weighs 12 KiByte (I think), in Linux, a thread weighs as little as 4 KiByte, in Erlang/BEAM even just 400 Byte. In .NET, it's 1 MiByte!)

Solution 2:

A task is something you want done.

A thread is one of the many possible workers which performs that task.

In .NET 4.0 terms, a Task represents an asynchronous operation. Thread(s) are used to complete that operation by breaking the work up into chunks and assigning to separate threads.

Solution 3:

Thread

The bare metal thing, you probably don't need to use it, you probably can use a LongRunning task and take the benefits from the TPL - Task Parallel Library, included in .NET Framework 4 (february, 2002) and above (also .NET Core).

Tasks

Abstraction above the Threads. It uses the thread pool (unless you specify the task as a LongRunning operation, if so, a new thread is created under the hood for you).

Thread Pool

As the name suggests: a pool of threads. Is the .NET framework handling a limited number of threads for you. Why? Because opening 100 threads to execute expensive CPU operations on a Processor with just 8 cores definitely is not a good idea. The framework will maintain this pool for you, reusing the threads (not creating/killing them at each operation), and executing some of them in parallel, in a way that your CPU will not burn.

OK, but when to use each one?

In resume: always use tasks.

Task is an abstraction, so it is a lot easier to use. I advise you to always try to use tasks and if you face some problem that makes you need to handle a thread by yourself (probably 1% of the time) then use threads.

BUT be aware that:

  • I/O Bound: For I/O bound operations (database calls, read/write files, APIs calls, etc) avoid using normal tasks, use LongRunning tasks (or threads if you need to). Because using tasks would lead you to a thread pool with a few threads busy and a lot of other tasks waiting for its turn to take the pool.
  • CPU Bound: For CPU bound operations just use the normal tasks (that internally will use the thread pool) and be happy.