Transform a set of numbers in numpy so that each number gets converted into a number of other numbers which are less than it
Solution 1:
What you actually need to do is get the inverse of the sorting order of your array:
import numpy as np
x = np.random.rand(10)
y = np.empty(x.size,dtype=np.int64)
y[x.argsort()] = np.arange(x.size)
Example run (in ipython):
In [367]: x
Out[367]:
array([ 0.09139335, 0.29084225, 0.43560987, 0.92334644, 0.09868977,
0.90202354, 0.80905083, 0.4801967 , 0.99086213, 0.00933582])
In [368]: y
Out[368]: array([1, 3, 4, 8, 2, 7, 6, 5, 9, 0])
Alternatively, if you want to get the number of elements greater than each corresponding element in x
, you have to reverse the sorting from ascending to descending. One possible option to do this is to simply swap the construction of the indexing:
y_rev = np.empty(x.size,dtype=np.int64)
y_rev[x.argsort()] = np.arange(x.size)[::-1]
another, as @unutbu suggested in a comment, is to map the original array to the new one:
y_rev = x.size - y - 1
Solution 2:
Here's one approach using np.searchsorted
-
np.searchsorted(np.sort(x),x)
Another one mostly based on @Andras Deak's solution
using argsort()
-
x.argsort().argsort()
Sample run -
In [359]: x
Out[359]:
array([ 0.62594394, 0.03255799, 0.7768568 , 0.03050498, 0.01951657,
0.04767246, 0.68038553, 0.60036203, 0.3617409 , 0.80294355])
In [360]: np.searchsorted(np.sort(x),x)
Out[360]: array([6, 2, 8, 1, 0, 3, 7, 5, 4, 9])
In [361]: x.argsort().argsort()
Out[361]: array([6, 2, 8, 1, 0, 3, 7, 5, 4, 9])
Solution 3:
In addition to the other answers another solution using boolean indexing could be:
sum(x > i for i in x)
For your example:
In [10]: x
Out[10]:
array([ 0.62594394, 0.03255799, 0.7768568 , 0.03050498, 0.01951657,
0.04767246, 0.68038553, 0.60036203, 0.3617409 , 0.80294355])
In [10]: y = sum(x > i for i in x)
In [11]: y
Out[10]: array([6, 2, 8, 1, 0, 3, 7, 5, 4, 9])