Spark yarn cluster vs client - how to choose which one to use?
A common deployment strategy is to submit your application from a gateway machine that is physically co-located with your worker machines (e.g. Master node in a standalone EC2 cluster). In this setup, client mode is appropriate. In client mode, the driver is launched directly within the spark-submit process which acts as a client to the cluster. The input and output of the application is attached to the console. Thus, this mode is especially suitable for applications that involve the REPL (e.g. Spark shell).
Alternatively, if your application is submitted from a machine far from the worker machines (e.g. locally on your laptop), it is common to use cluster mode to minimize network latency between the drivers and the executors. Note that cluster mode is currently not supported for Mesos clusters. Currently only YARN supports cluster mode for Python applications." -- Submitting Applications
What I understand from this is that both strategies use the cluster to distribute tasks; the difference is where the "driver program" runs: locally with spark-submit, or, also in the cluster.
When you should use either of them is detailed in the quote above, but I also did another thing: for big jars, I used rsync
to copy them to the cluster (or even to master node) with 100 times the network speed, and then submitted from the cluster. This can be better than "cluster mode" for big jars. Note that client mode does not probably transfer the jar to the master. At that point the difference between the 2 is minimal. Probably client mode is better when the driver program is idle most of the time, to make full use of cores on the local machine and perhaps avoid transferring the jar to the master (even on loopback interface a big jar takes quite a bit of seconds). And with client mode you can transfer (rsync) the jar on any cluster node.
On the other hand, if the driver is very intensive, in cpu or I/O, cluster mode may be more appropriate, to better balance the cluster (in client mode, the local machine would run both the driver and as many workers as possible, making it over loaded and making it that local tasks will be slower, making it such that the whole job may end up waiting for a couple of tasks from the local machine).
Conclusion :
- To sum up, if I am in the same local network with the cluster, I would use the client mode and submit it from my laptop. If the cluster is far away, I would either submit locally with cluster mode, or
rsync
the jar to the remote cluster and submit it there, in client or cluster mode, depending on how heavy the driver program is on resources.*AFAIK With the driver program running in the cluster, it is less vulnerable to remote disconnects crashing the driver and the entire spark job.This is especially useful for long running jobs such as stream processing type workloads.
Spark Jobs Running on YARN
When running Spark on YARN, each Spark executor runs as a YARN container. Where MapReduce schedules a container and fires up a JVM for each task, Spark hosts multiple tasks within the same container. This approach enables several orders of magnitude faster task startup time.
Spark supports two modes for running on YARN, “yarn-cluster” mode and “yarn-client” mode. Broadly, yarn-cluster mode makes sense for production jobs, while yarn-client mode makes sense for interactive and debugging uses where you want to see your application’s output immediately.
Understanding the difference requires an understanding of YARN’s Application Master concept. In YARN, each application instance has an Application Master process, which is the first container started for that application. The application is responsible for requesting resources from the ResourceManager, and, when allocated them, telling NodeManagers to start containers on its behalf. Application Masters obviate the need for an active client — the process starting the application can go away and coordination continues from a process managed by YARN running on the cluster.
In yarn-cluster mode, the driver runs in the Application Master. This means that the same process is responsible for both driving the application and requesting resources from YARN, and this process runs inside a YARN container. The client that starts the app doesn’t need to stick around for its entire lifetime.
yarn-cluster mode
The yarn-cluster mode is not well suited to using Spark interactively, but the yarn-client mode is. Spark applications that require user input, like spark-shell and PySpark, need the Spark driver to run inside the client process that initiates the Spark application. In yarn-client mode, the Application Master is merely present to request executor containers from YARN. The client communicates with those containers to schedule work after they start:
yarn-client mode
This table offers a concise list of differences between these modes:
Reference: https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/ - Apache Spark Resource Management and YARN App Models (web.archive.com mirror)
In yarn-cluster mode, the driver program will run on the node where application master is running where as in yarn-client mode the driver program will run on the node on which job is submitted on centralized gateway node.
Both answers by Ram and Chavati/Wai Lee are useful and helpful, but here I just want to added a couple of other points:
Much has been written about the proximity of driver to the executors, and that is a big factor. The other factors are:
- Will the driver process be around until execution of job is finished?
- How's returned data being handled?
#1. In spark client mode, the driver process must be up and running the whole time when the spark job is in execution. So if you have a truly long job that say take many hours to run, you need to make sure the driver process is still up and running, and that the driver session is not auto-logout.
On the other hand, after submitting a job to run in cluster mode, the process can go away. The cluster mode will keep running. So this is typically how a production job will run: the job can be triggered by a timer, or by an external event and then the job will run to its completion without worrying about the lifetime of the process submitting the spark job.
#2. In client mode, you can call sc.collect() to gather all the data back from all executors, and then write/save the returned data to a local Linux file on local disk. Now this may not work for cluster mode, as the 'driver' typically run in a different remote host. The data written up therefore need to be persisted in a common mounted volume (such as GPFS, NFS) or in distributed file system like HDFS. If the job is running under Hadoop/YARN, the more common way for cluster mode is simply ask each executor to persist the data to HDFS, and not to run collect( ) at all. Collect() actually have scalability issue when there are a large number of executors returning large amount of data - it can overwhelm the driver process.