Generating movie from python without saving individual frames to files
Solution 1:
This functionality is now (at least as of 1.2.0, maybe 1.1) baked into matplotlib via the MovieWriter
class and it's sub-classes in the animation
module. You also need to install ffmpeg
in advance.
import matplotlib.animation as animation
import numpy as np
from pylab import *
dpi = 100
def ani_frame():
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_aspect('equal')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
im = ax.imshow(rand(300,300),cmap='gray',interpolation='nearest')
im.set_clim([0,1])
fig.set_size_inches([5,5])
tight_layout()
def update_img(n):
tmp = rand(300,300)
im.set_data(tmp)
return im
#legend(loc=0)
ani = animation.FuncAnimation(fig,update_img,300,interval=30)
writer = animation.writers['ffmpeg'](fps=30)
ani.save('demo.mp4',writer=writer,dpi=dpi)
return ani
Documentation for animation
Solution 2:
After patching ffmpeg (see Joe Kington comments to my question), I was able to get piping png's to ffmpeg as follows:
import subprocess
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
outf = 'test.avi'
rate = 1
cmdstring = ('local/bin/ffmpeg',
'-r', '%d' % rate,
'-f','image2pipe',
'-vcodec', 'png',
'-i', 'pipe:', outf
)
p = subprocess.Popen(cmdstring, stdin=subprocess.PIPE)
plt.figure()
frames = 10
for i in range(frames):
plt.imshow(np.random.randn(100,100))
plt.savefig(p.stdin, format='png')
It would not work without the patch, which trivially modifies two files and adds libavcodec/png_parser.c
. I had to manually apply the patch to libavcodec/Makefile
. Lastly, I removed '-number' from Makefile
to get the man pages to build. With compile options,
FFmpeg version 0.6.1, Copyright (c) 2000-2010 the FFmpeg developers
built on Nov 30 2010 20:42:02 with gcc 4.2.1 (Apple Inc. build 5664)
configuration: --prefix=/Users/paul/local_test --enable-gpl --enable-postproc --enable-swscale --enable-libxvid --enable-libx264 --enable-nonfree --mandir=/Users/paul/local_test/share/man --enable-shared --enable-pthreads --disable-indevs --cc=/usr/bin/gcc-4.2 --arch=x86_64 --extra-cflags=-I/opt/local/include --extra-ldflags=-L/opt/local/lib
libavutil 50.15. 1 / 50.15. 1
libavcodec 52.72. 2 / 52.72. 2
libavformat 52.64. 2 / 52.64. 2
libavdevice 52. 2. 0 / 52. 2. 0
libswscale 0.11. 0 / 0.11. 0
libpostproc 51. 2. 0 / 51. 2. 0
Solution 3:
Converting to image formats is quite slow and adds dependencies. After looking at these page and other I got it working using raw uncoded buffers using mencoder (ffmpeg solution still wanted).
Details at: http://vokicodder.blogspot.com/2011/02/numpy-arrays-to-video.html
import subprocess
import numpy as np
class VideoSink(object) :
def __init__( self, size, filename="output", rate=10, byteorder="bgra" ) :
self.size = size
cmdstring = ('mencoder',
'/dev/stdin',
'-demuxer', 'rawvideo',
'-rawvideo', 'w=%i:h=%i'%size[::-1]+":fps=%i:format=%s"%(rate,byteorder),
'-o', filename+'.avi',
'-ovc', 'lavc',
)
self.p = subprocess.Popen(cmdstring, stdin=subprocess.PIPE, shell=False)
def run(self, image) :
assert image.shape == self.size
self.p.stdin.write(image.tostring())
def close(self) :
self.p.stdin.close()
I got some nice speedups.
Solution 4:
These are all really great answers. Here's another suggestion. @user621442 is correct that the bottleneck is typically the writing of the image, so if you are writing png files to your video compressor, it will be pretty slow (even if you are sending them through a pipe instead of writing to disk). I found a solution using pure ffmpeg, which I personally find easier to use than matplotlib.animation or mencoder.
Also, in my case, I wanted to just save the image in an axis, instead of saving all of the tick labels, figure title, figure background, etc. Basically I wanted to make a movie/animation using matplotlib code, but not have it "look like a graph". I've included that code here, but you can make standard graphs and pipe them to ffmpeg instead if you want.
import matplotlib.pyplot as plt
import subprocess
# create a figure window that is the exact size of the image
# 400x500 pixels in my case
# don't draw any axis stuff ... thanks to @Joe Kington for this trick
# https://stackoverflow.com/questions/14908576/how-to-remove-frame-from-matplotlib-pyplot-figure-vs-matplotlib-figure-frame
f = plt.figure(frameon=False, figsize=(4, 5), dpi=100)
canvas_width, canvas_height = f.canvas.get_width_height()
ax = f.add_axes([0, 0, 1, 1])
ax.axis('off')
def update(frame):
# your matplotlib code goes here
# Open an ffmpeg process
outf = 'ffmpeg.mp4'
cmdstring = ('ffmpeg',
'-y', '-r', '30', # overwrite, 30fps
'-s', '%dx%d' % (canvas_width, canvas_height), # size of image string
'-pix_fmt', 'argb', # format
'-f', 'rawvideo', '-i', '-', # tell ffmpeg to expect raw video from the pipe
'-vcodec', 'mpeg4', outf) # output encoding
p = subprocess.Popen(cmdstring, stdin=subprocess.PIPE)
# Draw 1000 frames and write to the pipe
for frame in range(1000):
# draw the frame
update(frame)
plt.draw()
# extract the image as an ARGB string
string = f.canvas.tostring_argb()
# write to pipe
p.stdin.write(string)
# Finish up
p.communicate()