Prevent pandas read_csv treating first row as header of column names
Solution 1:
You want header=None
the False
gets type promoted to int
into 0
see the docs emphasis mine:
header : int or list of ints, default ‘infer’ Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.
You can see the difference in behaviour, first with header=0
:
In [95]:
import io
import pandas as pd
t="""a,b,c
0,1,2
3,4,5"""
pd.read_csv(io.StringIO(t), header=0)
Out[95]:
a b c
0 0 1 2
1 3 4 5
Now with None
:
In [96]:
pd.read_csv(io.StringIO(t), header=None)
Out[96]:
0 1 2
0 a b c
1 0 1 2
2 3 4 5
Note that in latest version 0.19.1
, this will now raise a TypeError
:
In [98]:
pd.read_csv(io.StringIO(t), header=False)
TypeError: Passing a bool to header is invalid. Use header=None for no header or header=int or list-like of ints to specify the row(s) making up the column names
Solution 2:
I think you need parameter header=None
to read_csv
:
Sample:
import pandas as pd
from pandas.compat import StringIO
temp=u"""a,b
2,1
1,1"""
df = pd.read_csv(StringIO(temp),header=None)
print (df)
0 1
0 a b
1 2 1
2 1 1