Is it possible to simplify $\frac{\Gamma\left(\frac{1}{10}\right)}{\Gamma\left(\frac{2}{15}\right)\ \Gamma\left(\frac{7}{15}\right)}$?
Is it possible to simplify this expression? $$\frac{\displaystyle\Gamma\left(\frac{1}{10}\right)}{\displaystyle\Gamma\left(\frac{2}{15}\right)\ \Gamma\left(\frac{7}{15}\right)}$$ Is there a systematic way to check ratios of Gamma-functions like this for simplification possibility?
Amazingly, this can be greatly simplified. I'll state the result first:
$$\frac{\displaystyle\Gamma\left(\frac{1}{10}\right)}{\displaystyle\Gamma\left(\frac{2}{15}\right)\Gamma\left(\frac{7}{15}\right)} = \frac{\sqrt{5}+1}{3^{1/10} 2^{6/5} \sqrt{\pi}}$$
The result follows first from a version of Gauss's multiplication formula:
$$\displaystyle\Gamma(3 z) = \frac{1}{2 \pi} 3^{3 z-1/2} \Gamma(z) \Gamma\left(z+\frac13\right) \Gamma\left(z+\frac{2}{3}\right)$$
or, with $z=2/15$:
$$\Gamma\left(\frac{2}{15}\right)\Gamma\left(\frac{7}{15}\right) = 2 \pi \,3^{1/10} \frac{\displaystyle\Gamma\left(\frac{2}{5}\right)}{\displaystyle\Gamma\left(\frac{4}{5}\right)}$$
Now use the duplication formula
$$\Gamma(2 z) = \frac{1}{\sqrt{\pi}}\, 2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac12\right)$$
or, with $z=2/5$:
$$\frac{\displaystyle\Gamma\left(\frac{2}{5}\right)}{\displaystyle\Gamma\left(\frac{4}{5}\right)} = \frac{\sqrt{\pi} \, 2^{1/5}}{\displaystyle\Gamma\left(\frac{9}{10}\right)}$$
Putting this all together, we get
$$\frac{\displaystyle\Gamma\left(\frac{1}{10}\right)}{\displaystyle\Gamma\left(\frac{2}{15}\right)\Gamma\left(\frac{7}{15}\right)} = \frac{\displaystyle\Gamma\left(\frac{1}{10}\right) \Gamma\left(\frac{9}{10}\right)}{\sqrt{\pi^3} \, 2^{6/5} \, 3^{1/10}}$$
And now, we may use the reflection formula:
$$\Gamma(z) \Gamma(1-z) = \frac{\pi}{\sin{\pi z}}$$
With $z=1/10$, and noting that
$$\sin{\left(\frac{\pi}{10}\right)} = \frac{\sqrt{5}-1}{4} = \frac{1}{\sqrt{5}+1}$$
the stated result follows. This has been verified numerically in Wolfram|Alpha.