Convert Pandas dataframe to Dask dataframe
Suppose I have pandas dataframe as:
df=pd.DataFrame({'a':[1,2,3],'b':[4,5,6]})
When I convert it into dask dataframe what should name
and divisions
parameter consist of:
from dask import dataframe as dd
sd=dd.DataFrame(df.to_dict(),divisions=1,meta=pd.DataFrame(columns=df.columns,index=df.index))
TypeError: init() missing 1 required positional argument: 'name'
Edit : Suppose I create a pandas dataframe like:
pd.DataFrame({'a':[1,2,3],'b':[4,5,6]})
Similarly how to create dask dataframe as it needs three additional arguments as name,divisions
and meta
.
sd=dd.Dataframe({'a':[1,2,3],'b':[4,5,6]},name=,meta=,divisions=)
Thank you for your reply.
Solution 1:
I think you can use dask.dataframe.from_pandas
:
from dask import dataframe as dd
sd = dd.from_pandas(df, npartitions=3)
print (sd)
dd.DataFrame<from_pa..., npartitions=2, divisions=(0, 1, 2)>
EDIT:
I find solution:
import pandas as pd
import dask.dataframe as dd
from dask.dataframe.utils import make_meta
df=pd.DataFrame({'a':[1,2,3],'b':[4,5,6]})
dsk = {('x', 0): df}
meta = make_meta({'a': 'i8', 'b': 'i8'}, index=pd.Index([], 'i8'))
d = dd.DataFrame(dsk, name='x', meta=meta, divisions=[0, 1, 2])
print (d)
dd.DataFrame<x, npartitions=2, divisions=(0, 1, 2)>