When to use AtomicReference in Java?

Solution 1:

Atomic reference should be used in a setting where you need to do simple atomic (i.e. thread-safe, non-trivial) operations on a reference, for which monitor-based synchronization is not appropriate. Suppose you want to check to see if a specific field only if the state of the object remains as you last checked:

AtomicReference<Object> cache = new AtomicReference<Object>();

Object cachedValue = new Object();
cache.set(cachedValue);

//... time passes ...
Object cachedValueToUpdate = cache.get();
//... do some work to transform cachedValueToUpdate into a new version
Object newValue = someFunctionOfOld(cachedValueToUpdate);
boolean success = cache.compareAndSet(cachedValue,cachedValueToUpdate);

Because of the atomic reference semantics, you can do this even if the cache object is shared amongst threads, without using synchronized. In general, you're better off using synchronizers or the java.util.concurrent framework rather than bare Atomic* unless you know what you're doing.

Two excellent dead-tree references which will introduce you to this topic:

  • Herlihy's excellent Art of Multiprocessor Programming
  • Java Concurrency in Practice

Note that (I don't know if this has always been true) reference assignment (i.e. =) is itself atomic (updating primitive 64-bit types like long or double may not be atomic; but updating a reference is always atomic, even if it's 64 bit) without explicitly using an Atomic*.
See the Java Language Specification 3ed, Section 17.7.

Solution 2:

An atomic reference is ideal to use when you need to share and change the state of an immutable object between multiple threads. That is a super dense statement so I will break it down a bit.

First, an immutable object is an object that is effectively not changed after construction. Frequently an immutable object's methods return new instances of that same class. Some examples include the wrapper classes of Long and Double, as well as String, just to name a few. (According to Programming Concurrency on the JVM immutable objects are a critical part of modern concurrency).

Next, why AtomicReference is better than a volatile object for sharing that shared value. A simple code example will show the difference.

volatile String sharedValue;
static final Object lock=new Object();
void modifyString(){
  synchronized(lock){
    sharedValue=sharedValue+"something to add";
  }
}

Every time you want to modify the string referenced by that volatile field based on its current value, you first need to obtain a lock on that object. This prevents some other thread from coming in during the meantime and changing the value in the middle of the new string concatenation. Then when your thread resumes, you clobber the work of the other thread. But honestly that code will work, it looks clean, and it would make most people happy.

Slight problem. It is slow. Especially if there is a lot of contention of that lock Object. Thats because most locks require an OS system call, and your thread will block and be context switched out of the CPU to make way for other processes.

The other option is to use an AtomicRefrence.

public static AtomicReference<String> shared = new AtomicReference<>();
String init="Inital Value";
shared.set(init);
//now we will modify that value
boolean success=false;
while(!success){
  String prevValue=shared.get();
  // do all the work you need to
  String newValue=shared.get()+"lets add something";
  // Compare and set
  success=shared.compareAndSet(prevValue,newValue);
}

Now why is this better? Honestly that code is a little less clean than before. But there is something really important that happens under the hood in AtomicRefrence, and that is compare and swap. It is a single CPU instruction, not an OS call, that makes the switch happen. That is a single instruction on the CPU. And because there are no locks, there is no context switch in the case where the lock gets exercised which saves even more time!

The catch is, for AtomicReferences, this does not use a .equals() call, but instead an == comparison for the expected value. So make sure the expected is the actual object returned from get in the loop.

Solution 3:

Here is a use case for AtomicReference:

Consider this class that acts as a number range, and uses individual AtmomicInteger variables to maintain lower and upper number bounds.

public class NumberRange {
    // INVARIANT: lower <= upper
    private final AtomicInteger lower = new AtomicInteger(0);
    private final AtomicInteger upper = new AtomicInteger(0);

    public void setLower(int i) {
        // Warning -- unsafe check-then-act
        if (i > upper.get())
            throw new IllegalArgumentException(
                    "can't set lower to " + i + " > upper");
        lower.set(i);
    }

    public void setUpper(int i) {
        // Warning -- unsafe check-then-act
        if (i < lower.get())
            throw new IllegalArgumentException(
                    "can't set upper to " + i + " < lower");
        upper.set(i);
    }

    public boolean isInRange(int i) {
        return (i >= lower.get() && i <= upper.get());
    }
}

Both setLower and setUpper are check-then-act sequences, but they do not use sufficient locking to make them atomic. If the number range holds (0, 10), and one thread calls setLower(5) while another thread calls setUpper(4), with some unlucky timing both will pass the checks in the setters and both modifications will be applied. The result is that the range now holds (5, 4)an invalid state. So while the underlying AtomicIntegers are thread-safe, the composite class is not. This can be fixed by using a AtomicReference instead of using individual AtomicIntegers for upper and lower bounds.

public class CasNumberRange {
    // Immutable
    private static class IntPair {
        final int lower;  // Invariant: lower <= upper
        final int upper;

        private IntPair(int lower, int upper) {
            this.lower = lower;
            this.upper = upper;
        }
    }

    private final AtomicReference<IntPair> values = 
            new AtomicReference<IntPair>(new IntPair(0, 0));

    public int getLower() {
        return values.get().lower;
    }

    public void setLower(int lower) {
        while (true) {
            IntPair oldv = values.get();
            if (lower > oldv.upper)
                throw new IllegalArgumentException(
                    "Can't set lower to " + lower + " > upper");
            IntPair newv = new IntPair(lower, oldv.upper);
            if (values.compareAndSet(oldv, newv))
                return;
        }
    }

    public int getUpper() {
        return values.get().upper;
    }

    public void setUpper(int upper) {
        while (true) {
            IntPair oldv = values.get();
            if (upper < oldv.lower)
                throw new IllegalArgumentException(
                    "Can't set upper to " + upper + " < lower");
            IntPair newv = new IntPair(oldv.lower, upper);
            if (values.compareAndSet(oldv, newv))
                return;
        }
    }
}

Solution 4:

You can use AtomicReference when applying optimistic locks. You have a shared object and you want to change it from more than 1 thread.

  1. You can create a copy of the shared object
  2. Modify the shared object
  3. You need to check that the shared object is still the same as before - if yes, then update with the reference of the modified copy.

As other thread might have modified it and/can modify between these 2 steps. You need to do it in an atomic operation. this is where AtomicReference can help

Solution 5:

Here's a very simple use case and has nothing to do with thread safety.

To share an object between lambda invocations, the AtomicReference is an option:

public void doSomethingUsingLambdas() {

    AtomicReference<YourObject> yourObjectRef = new AtomicReference<>();

    soSomethingThatTakesALambda(() -> {
        yourObjectRef.set(youObject);
    });

    soSomethingElseThatTakesALambda(() -> {
        YourObject yourObject = yourObjectRef.get();
    });
}

I'm not saying this is good design or anything (it's just a trivial example), but if you have have the case where you need to share an object between lambda invocations, the AtomicReference is an option.

In fact you can use any object that holds a reference, even a Collection that has only one item. However, the AtomicReference is a perfect fit.