How do I prove that $2^n=O(n!)$?
Solution 1:
Since $e^2=\sum_{n=0}^{+\infty}\frac{2^n}{n!}$ converges (by ratio test if you want), the general term tends to $0$, whence, actually, $ 2^n=o(n!)$ and not only $O(n!)$.
Solution 2:
The argument is very informal and has a small hole in it, but the basic idea is correct. The hole lies in the fact that $2^n$ is actually larger than $n!$ for $n=1,2,3$. Properly you should show by induction on $n$ that $2^n\le n!$ for $n\ge 4$ and conclude immediately that $2^n$ is $O(n!)$.
Solution 3:
$$\begin{align*}&(1)\;\;\text{Look at the positive series}\;\sum_{n=1}^\infty\frac{2^n}{n!}\\{}\\ &(2)\;\;\frac{a_{n+1}}{a_n}=\frac{2^{n+1}}{(n+1)!}\cdot\frac{n!}{2^n}=\frac2{n+1}\xrightarrow[n\to\infty]{}0 \;,\;\text{thus}\\{}\\ &(3)\;\;\text{The series in (1) converges}\\{}\\ &(4)\;\;a_n=\frac{2^n}{n!}\xrightarrow[n\to\infty]{}0\end{align*}$$
Thus, for some
$$N\in\Bbb N\;\;\text{and}\;\;\forall n>N\;,\;\;\frac{2^n}{n!}<1\implies 2^n=\mathcal O(n!)$$
Solution 4:
You can use induction for $n > 3$.
Assume $ p(k): 2 ^ k < k!, k > 3 $
Prove that $p(k +1 ): 2 ^ {k + 1} < (k + 1)!$
$ 2 ^ {k + 1} = 2 ^ k * 2$
$ (k + 1)! = k! * k$
$ k > 2 \implies 2 ^ {k + 1} < (k + 1)! $