How can I profile Python code line-by-line?
I've been using cProfile to profile my code, and it's been working great. I also use gprof2dot.py to visualize the results (makes it a little clearer).
However, cProfile (and most other Python profilers I've seen so far) seem to only profile at the function-call level. This causes confusion when certain functions are called from different places - I have no idea if call #1 or call #2 is taking up the majority of the time. This gets even worse when the function in question is six levels deep, called from seven other places.
How do I get a line-by-line profiling?
Instead of this:
function #12, total time: 2.0s
I'd like to see something like this:
function #12 (called from somefile.py:102) 0.5s
function #12 (called from main.py:12) 1.5s
cProfile does show how much of the total time "transfers" to the parent, but again this connection is lost when you have a bunch of layers and interconnected calls.
Ideally, I'd love to have a GUI that would parse through the data, then show me my source file with a total time given to each line. Something like this:
main.py:
a = 1 # 0.0s
result = func(a) # 0.4s
c = 1000 # 0.0s
result = func(c) # 5.0s
Then I'd be able to click on the second "func(c)" call to see what's taking up time in that call, separate from the "func(a)" call. Does that make sense?
Solution 1:
I believe that's what Robert Kern's line_profiler is intended for. From the link:
File: pystone.py
Function: Proc2 at line 149
Total time: 0.606656 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
149 @profile
150 def Proc2(IntParIO):
151 50000 82003 1.6 13.5 IntLoc = IntParIO + 10
152 50000 63162 1.3 10.4 while 1:
153 50000 69065 1.4 11.4 if Char1Glob == 'A':
154 50000 66354 1.3 10.9 IntLoc = IntLoc - 1
155 50000 67263 1.3 11.1 IntParIO = IntLoc - IntGlob
156 50000 65494 1.3 10.8 EnumLoc = Ident1
157 50000 68001 1.4 11.2 if EnumLoc == Ident1:
158 50000 63739 1.3 10.5 break
159 50000 61575 1.2 10.1 return IntParIO
Solution 2:
You could also use pprofile(pypi). If you want to profile the entire execution, it does not require source code modification. You can also profile a subset of a larger program in two ways:
-
toggle profiling when reaching a specific point in the code, such as:
import pprofile profiler = pprofile.Profile() with profiler: some_code # Process profile content: generate a cachegrind file and send it to user. # You can also write the result to the console: profiler.print_stats() # Or to a file: profiler.dump_stats("/tmp/profiler_stats.txt")
-
toggle profiling asynchronously from call stack (requires a way to trigger this code in considered application, for example a signal handler or an available worker thread) by using statistical profiling:
import pprofile profiler = pprofile.StatisticalProfile() statistical_profiler_thread = pprofile.StatisticalThread( profiler=profiler, ) with statistical_profiler_thread: sleep(n) # Likewise, process profile content
Code annotation output format is much like line profiler:
$ pprofile --threads 0 demo/threads.py
Command line: ['demo/threads.py']
Total duration: 1.00573s
File: demo/threads.py
File duration: 1.00168s (99.60%)
Line #| Hits| Time| Time per hit| %|Source code
------+----------+-------------+-------------+-------+-----------
1| 2| 3.21865e-05| 1.60933e-05| 0.00%|import threading
2| 1| 5.96046e-06| 5.96046e-06| 0.00%|import time
3| 0| 0| 0| 0.00%|
4| 2| 1.5974e-05| 7.98702e-06| 0.00%|def func():
5| 1| 1.00111| 1.00111| 99.54%| time.sleep(1)
6| 0| 0| 0| 0.00%|
7| 2| 2.00272e-05| 1.00136e-05| 0.00%|def func2():
8| 1| 1.69277e-05| 1.69277e-05| 0.00%| pass
9| 0| 0| 0| 0.00%|
10| 1| 1.81198e-05| 1.81198e-05| 0.00%|t1 = threading.Thread(target=func)
(call)| 1| 0.000610828| 0.000610828| 0.06%|# /usr/lib/python2.7/threading.py:436 __init__
11| 1| 1.52588e-05| 1.52588e-05| 0.00%|t2 = threading.Thread(target=func)
(call)| 1| 0.000438929| 0.000438929| 0.04%|# /usr/lib/python2.7/threading.py:436 __init__
12| 1| 4.79221e-05| 4.79221e-05| 0.00%|t1.start()
(call)| 1| 0.000843048| 0.000843048| 0.08%|# /usr/lib/python2.7/threading.py:485 start
13| 1| 6.48499e-05| 6.48499e-05| 0.01%|t2.start()
(call)| 1| 0.00115609| 0.00115609| 0.11%|# /usr/lib/python2.7/threading.py:485 start
14| 1| 0.000205994| 0.000205994| 0.02%|(func(), func2())
(call)| 1| 1.00112| 1.00112| 99.54%|# demo/threads.py:4 func
(call)| 1| 3.09944e-05| 3.09944e-05| 0.00%|# demo/threads.py:7 func2
15| 1| 7.62939e-05| 7.62939e-05| 0.01%|t1.join()
(call)| 1| 0.000423908| 0.000423908| 0.04%|# /usr/lib/python2.7/threading.py:653 join
16| 1| 5.26905e-05| 5.26905e-05| 0.01%|t2.join()
(call)| 1| 0.000320196| 0.000320196| 0.03%|# /usr/lib/python2.7/threading.py:653 join
Note that because pprofile does not rely on code modification it can profile top-level module statements, allowing to profile program startup time (how long it takes to import modules, initialise globals, ...).
It can generate cachegrind-formatted output, so you can use kcachegrind to browse large results easily.
Disclosure: I am pprofile author.
Solution 3:
Just to improve @Joe Kington 's above-mentioned answer.
For Python 3.x, use line_profiler:
Installation:
pip install line_profiler
Usage:
Suppose you have the program main.py
and within it, functions fun_a()
and fun_b()
that you want to profile with respect to time; you will need to use the decorator @profile
just before the function definitions. For e.g.,
@profile
def fun_a():
#do something
@profile
def fun_b():
#do something more
if __name__ == '__main__':
fun_a()
fun_b()
The program can be profiled by executing the shell command:
$ kernprof -l -v main.py
The arguments can be fetched using $ kernprof -h
Usage: kernprof [-s setupfile] [-o output_file_path] scriptfile [arg] ...
Options:
--version show program's version number and exit
-h, --help show this help message and exit
-l, --line-by-line Use the line-by-line profiler from the line_profiler
module instead of Profile. Implies --builtin.
-b, --builtin Put 'profile' in the builtins. Use 'profile.enable()'
and 'profile.disable()' in your code to turn it on and
off, or '@profile' to decorate a single function, or
'with profile:' to profile a single section of code.
-o OUTFILE, --outfile=OUTFILE
Save stats to <outfile>
-s SETUP, --setup=SETUP
Code to execute before the code to profile
-v, --view View the results of the profile in addition to saving
it.
The results will be printed on the console as:
Total time: 17.6699 s
File: main.py
Function: fun_a at line 5
Line # Hits Time Per Hit % Time Line Contents
==============================================================
5 @profile
6 def fun_a():
...
EDIT: The results from the profilers can be parsed using the TAMPPA package. Using it, we can get line-by-line desired plots as
Solution 4:
You can take help of line_profiler package for this
1. 1st install the package:
pip install line_profiler
2. Use magic command to load the package to your python/notebook environment
%load_ext line_profiler
3. If you want to profile the codes for a function then
do as follows:
%lprun -f demo_func demo_func(arg1, arg2)
you will get a nice formatted output with all the details if you follow these steps :)
Line # Hits Time Per Hit % Time Line Contents
1 def demo_func(a,b):
2 1 248.0 248.0 64.8 print(a+b)
3 1 40.0 40.0 10.4 print(a)
4 1 94.0 94.0 24.5 print(a*b)
5 1 1.0 1.0 0.3 return a/b