Integral with spherical symmetry over cube
Solution 1:
I. Spherical coordinates
Let's try to do this in spherical coordinates by brute force and see what happens. $$I = 16\int_R d \Omega \ d r,$$ where $R$ is the region for which $0\leq \theta\leq \pi/2$ and $0\leq\phi\leq \pi/4$. This region splits into two parts.
In region 1, $0\leq\theta \leq \theta'$ and we integrate up to $z=1$, so $0\leq r \leq 1/\cos\theta$.
In region 2, $\theta' \leq\theta \leq \pi/2$ and we integrate to $x=1$, so $0\leq r \leq 1/(\sin\theta\cos\phi)$.
Here $\theta'$ is a function of $\phi$, $\tan\theta' = \sqrt{1+\tan^2\phi}$. Notice that $\cos\theta' = 1/\sqrt{2+\tan^2\phi}$.
The integrals over region 1 and 2 are not elementary, $$\begin{eqnarray*} I_1 &=& 16 \int_0^{\pi/4} d\phi \int_0^{\theta'} d\theta \ \sin\theta \int_0^{1/\cos\theta} dr \\ &=& 8 \int_0^{\pi/4} d\phi \ \ln(2+\tan^2\phi) \\ %%% I_2 &=& 16 \int_0^{\pi/4} d\phi \int_{\theta'}^{\pi/2} d\theta \ \sin\theta \int_0^{1/(\sin\theta \cos\phi)} dr \\ &=& 16 \int_0^{\pi/4} d\phi \ \sec\phi \ \left(\frac{\pi}{2} - \theta'\right) \\ &=& 8\pi\ln(1+\sqrt2) - 16 \int_0^{\pi/4} d\phi \ \sec\phi \ \tan^{-1}\sqrt{1+\tan^2\phi}. \end{eqnarray*}$$ It is possible to go further with these integrals, but they are pretty ugly. Numerically they give $15.3482\cdots$. Let's try another approach.
II. Divergence theorem
Let's put together the steps in the comments and make it obvious our final answer is real.
Using the divergence theorem for ${\bf F} = \hat r/r$ we find $$I = 24\int_0^1 d x \int_0^1 d y \frac{1}{x^2+y^2+1},$$ and so, going to polar coordinates, $$\begin{eqnarray*} I &=& 48\int_0^{\pi/4} d \phi \int_0^{1/\cos\phi} d r \ \frac{r}{r^2+1} \\ &=& 24\int_0^{\pi/4} d\phi \ \ln(1+\sec^2\phi). \end{eqnarray*}$$ This integral is nontrivial.
Let us try a series approach and expand in small $\phi$. We find $$\begin{eqnarray*} I &=& 6\pi \ln 2 + 24\int_0^{\pi/4}d \phi \ \left[\ln\left(1-\frac{1}{2}\sin^2\phi\right) - \ln(1-\sin^2\phi)\right] \\ &=& 6\pi \ln 2 + 12\sum_{k=1}^\infty \frac{1}{k}\left(1-\frac{1}{2^k}\right) B_{\frac{1}{2}} \left(k+\frac{1}{2},\frac{1}{2}\right) \end{eqnarray*}$$ where $B_x(a,b)$ is the incomplete beta function. The $k$th term of the sum goes like $1/k^{3/2}$. Notice that $6\pi \ln 2 \approx 13$ so the ``zeroeth'' term is already a pretty good approximation.
Mathematica gives a result that doesn't appear explicitly real, but it can be massaged into $$I = 24 \mathrm{Ti}_2(3-2\sqrt2) + 6\pi \tanh^{-1}\frac{2\sqrt2}{3} - 24 C,$$ where $\mathrm{Ti}_2(x)$ is the inverse tangent integral, with the series $$\mathrm{Ti}_2(x) = \sum_{k=1}^\infty (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)^2},$$ and $C$ is the Catalan constant.