how does multiplication differ for NumPy Matrix vs Array classes?

The numpy docs recommend using array instead of matrix for working with matrices. However, unlike octave (which I was using till recently), * doesn't perform matrix multiplication, you need to use the function matrixmultipy(). I feel this makes the code very unreadable.

Does anybody share my views, and has found a solution?


The main reason to avoid using the matrix class is that a) it's inherently 2-dimensional, and b) there's additional overhead compared to a "normal" numpy array. If all you're doing is linear algebra, then by all means, feel free to use the matrix class... Personally I find it more trouble than it's worth, though.

For arrays (prior to Python 3.5), use dot instead of matrixmultiply.

E.g.

import numpy as np
x = np.arange(9).reshape((3,3))
y = np.arange(3)

print np.dot(x,y)

Or in newer versions of numpy, simply use x.dot(y)

Personally, I find it much more readable than the * operator implying matrix multiplication...

For arrays in Python 3.5, use x @ y.


the key things to know for operations on NumPy arrays versus operations on NumPy matrices are:

  • NumPy matrix is a subclass of NumPy array

  • NumPy array operations are element-wise (once broadcasting is accounted for)

  • NumPy matrix operations follow the ordinary rules of linear algebra

some code snippets to illustrate:

>>> from numpy import linalg as LA
>>> import numpy as NP

>>> a1 = NP.matrix("4 3 5; 6 7 8; 1 3 13; 7 21 9")
>>> a1
matrix([[ 4,  3,  5],
        [ 6,  7,  8],
        [ 1,  3, 13],
        [ 7, 21,  9]])

>>> a2 = NP.matrix("7 8 15; 5 3 11; 7 4 9; 6 15 4")
>>> a2
matrix([[ 7,  8, 15],
        [ 5,  3, 11],
        [ 7,  4,  9],
        [ 6, 15,  4]])

>>> a1.shape
(4, 3)

>>> a2.shape
(4, 3)

>>> a2t = a2.T
>>> a2t.shape
(3, 4)

>>> a1 * a2t         # same as NP.dot(a1, a2t) 
matrix([[127,  84,  85,  89],
        [218, 139, 142, 173],
        [226, 157, 136, 103],
        [352, 197, 214, 393]])

but this operations fails if these two NumPy matrices are converted to arrays:

>>> a1 = NP.array(a1)
>>> a2t = NP.array(a2t)

>>> a1 * a2t
Traceback (most recent call last):
   File "<pyshell#277>", line 1, in <module>
   a1 * a2t
   ValueError: operands could not be broadcast together with shapes (4,3) (3,4) 

though using the NP.dot syntax works with arrays; this operations works like matrix multiplication:

>> NP.dot(a1, a2t)
array([[127,  84,  85,  89],
       [218, 139, 142, 173],
       [226, 157, 136, 103],
       [352, 197, 214, 393]])

so do you ever need a NumPy matrix? ie, will a NumPy array suffice for linear algebra computation (provided you know the correct syntax, ie, NP.dot)?

the rule seems to be that if the arguments (arrays) have shapes (m x n) compatible with the a given linear algebra operation, then you are ok, otherwise, NumPy throws.

the only exception i have come across (there are likely others) is calculating matrix inverse.

below are snippets in which i have called a pure linear algebra operation (in fact, from Numpy's Linear Algebra module) and passed in a NumPy array

determinant of an array:

>>> m = NP.random.randint(0, 10, 16).reshape(4, 4)
>>> m
array([[6, 2, 5, 2],
       [8, 5, 1, 6],
       [5, 9, 7, 5],
       [0, 5, 6, 7]])

>>> type(m)
<type 'numpy.ndarray'>

>>> md = LA.det(m)
>>> md
1772.9999999999995

eigenvectors/eigenvalue pairs:

>>> LA.eig(m)
(array([ 19.703+0.j   ,   0.097+4.198j,   0.097-4.198j,   5.103+0.j   ]), 
array([[-0.374+0.j   , -0.091+0.278j, -0.091-0.278j, -0.574+0.j   ],
       [-0.446+0.j   ,  0.671+0.j   ,  0.671+0.j   , -0.084+0.j   ],
       [-0.654+0.j   , -0.239-0.476j, -0.239+0.476j, -0.181+0.j   ],
       [-0.484+0.j   , -0.387+0.178j, -0.387-0.178j,  0.794+0.j   ]]))

matrix norm:

>>>> LA.norm(m)
22.0227

qr factorization:

>>> LA.qr(a1)
(array([[ 0.5,  0.5,  0.5],
        [ 0.5,  0.5, -0.5],
        [ 0.5, -0.5,  0.5],
        [ 0.5, -0.5, -0.5]]), 
 array([[ 6.,  6.,  6.],
        [ 0.,  0.,  0.],
        [ 0.,  0.,  0.]]))

matrix rank:

>>> m = NP.random.rand(40).reshape(8, 5)
>>> m
array([[ 0.545,  0.459,  0.601,  0.34 ,  0.778],
       [ 0.799,  0.047,  0.699,  0.907,  0.381],
       [ 0.004,  0.136,  0.819,  0.647,  0.892],
       [ 0.062,  0.389,  0.183,  0.289,  0.809],
       [ 0.539,  0.213,  0.805,  0.61 ,  0.677],
       [ 0.269,  0.071,  0.377,  0.25 ,  0.692],
       [ 0.274,  0.206,  0.655,  0.062,  0.229],
       [ 0.397,  0.115,  0.083,  0.19 ,  0.701]])
>>> LA.matrix_rank(m)
5

matrix condition:

>>> a1 = NP.random.randint(1, 10, 12).reshape(4, 3)
>>> LA.cond(a1)
5.7093446189400954

inversion requires a NumPy matrix though:

>>> a1 = NP.matrix(a1)
>>> type(a1)
<class 'numpy.matrixlib.defmatrix.matrix'>

>>> a1.I
matrix([[ 0.028,  0.028,  0.028,  0.028],
        [ 0.028,  0.028,  0.028,  0.028],
        [ 0.028,  0.028,  0.028,  0.028]])
>>> a1 = NP.array(a1)
>>> a1.I

Traceback (most recent call last):
   File "<pyshell#230>", line 1, in <module>
   a1.I
   AttributeError: 'numpy.ndarray' object has no attribute 'I'

but the Moore-Penrose pseudoinverse seems to works just fine

>>> LA.pinv(m)
matrix([[ 0.314,  0.407, -1.008, -0.553,  0.131,  0.373,  0.217,  0.785],
        [ 1.393,  0.084, -0.605,  1.777, -0.054, -1.658,  0.069, -1.203],
        [-0.042, -0.355,  0.494, -0.729,  0.292,  0.252,  1.079, -0.432],
        [-0.18 ,  1.068,  0.396,  0.895, -0.003, -0.896, -1.115, -0.666],
        [-0.224, -0.479,  0.303, -0.079, -0.066,  0.872, -0.175,  0.901]])

>>> m = NP.array(m)

>>> LA.pinv(m)
array([[ 0.314,  0.407, -1.008, -0.553,  0.131,  0.373,  0.217,  0.785],
       [ 1.393,  0.084, -0.605,  1.777, -0.054, -1.658,  0.069, -1.203],
       [-0.042, -0.355,  0.494, -0.729,  0.292,  0.252,  1.079, -0.432],
       [-0.18 ,  1.068,  0.396,  0.895, -0.003, -0.896, -1.115, -0.666],
       [-0.224, -0.479,  0.303, -0.079, -0.066,  0.872, -0.175,  0.901]])

In 3.5, Python finally got a matrix multiplication operator. The syntax is a @ b.