How to fill matplotlib bars with a gradient?
I would be very interested in filling matplotlib/seaborn bars of a barplot with different gradients exactly like done here (not with matplotlib as far as I understood):
I have also checked this related topic Pyplot: vertical gradient fill under curve?.
Is this only possible via gr-framework: or are there alternative strategies?
Just as depicted in Pyplot: vertical gradient fill under curve? one may use an image to create a gradient plot.
Since bars are rectangular the extent of the image can be directly set to the bar's position and size. One can loop over all bars and create an image at the respective position. The result is a gradient bar plot.
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
bar = ax.bar([1,2,3,4,5,6],[4,5,6,3,7,5])
def gradientbars(bars):
grad = np.atleast_2d(np.linspace(0,1,256)).T
ax = bars[0].axes
lim = ax.get_xlim()+ax.get_ylim()
for bar in bars:
bar.set_zorder(1)
bar.set_facecolor("none")
x,y = bar.get_xy()
w, h = bar.get_width(), bar.get_height()
ax.imshow(grad, extent=[x,x+w,y,y+h], aspect="auto", zorder=0)
ax.axis(lim)
gradientbars(bar)
plt.show()
I adapted @ImportanceOfBeingErnest's answer here using Seaborn instead of Matplotlib.
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
def gradientbars(bars):
grad = np.atleast_2d(np.linspace(0,1,256)).T # Gradient of your choice
rectangles = bars.containers[0]
# ax = bars[0].axes
fig, ax = plt.subplots()
xList = []
yList = []
for rectangle in rectangles:
x0 = rectangle._x0
x1 = rectangle._x1
y0 = rectangle._y0
y1 = rectangle._y1
xList.extend([x0,x1])
yList.extend([y0,y1])
ax.imshow(grad, extent=[x0,x1,y0,y1], aspect="auto", zorder=0)
ax.axis([min(xList), max(xList), min(yList), max(yList)*1.1]) # *1.1 to add some buffer to top of plot
return fig,ax
sns.set(style="whitegrid", color_codes=True)
np.random.seed(sum(map(ord, "categorical")))
# Load dataset
titanic = sns.load_dataset("titanic")
# Make Seaborn countplot
seabornAxHandle = sns.countplot(x="deck", data=titanic, palette="Greens_d")
plt.show() # Vertical bars with horizontal gradient
# Call gradientbars to make vertical gradient barplot using Seaborn ax
figVerticalGradient, axVerticalGradient = gradientbars(seabornAxHandle)
# Styling using the returned ax
axVerticalGradient.xaxis.grid(False)
axVerticalGradient.yaxis.grid(True)
# Labeling plot to match Seaborn
labels=titanic['deck'].dropna().unique().to_list() # Chaining to get tick labels as a list
labels.sort()
plt.ylabel('count')
plt.xlabel('deck')
plt.xticks(range(0,len(labels)), labels) # Set locations and labels
plt.show() # Vertical bars with vertical gradient
Output from Seaborn countplot:
Output with vertical gradient bars: