Floating point comparison functions for C#

Can someone point towards (or show) some good general floating point comparison functions in C# for comparing floating point values? I want to implement functions for IsEqual, IsGreater an IsLess. I also only really care about doubles not floats.


Writing a useful general-purpose floating point IsEqual is very, very hard, if not outright impossible. Your current code will fail badly for a==0. How the method should behave for such cases is really a matter of definition, and arguably the code would best be tailored for the specific domain use case.

For this kind of thing, you really, really need a good test suite. That's how I did it for The Floating-Point Guide, this is what I came up with in the end (Java code, should be easy enough to translate):

public static boolean nearlyEqual(float a, float b, float epsilon) {
    final float absA = Math.abs(a);
    final float absB = Math.abs(b);
    final float diff = Math.abs(a - b);

    if (a == b) { // shortcut, handles infinities
        return true;
    } else if (a == 0 || b == 0 || absA + absB < Float.MIN_NORMAL) {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        return diff < (epsilon * Float.MIN_NORMAL);
    } else { // use relative error
        return diff / (absA + absB) < epsilon;
    }
}

You can also find the test suite on the site.

Appendix: Same code in c# for doubles (as asked in questions)

public static bool NearlyEqual(double a, double b, double epsilon)
{
    const double MinNormal = 2.2250738585072014E-308d;
    double absA = Math.Abs(a);
    double absB = Math.Abs(b);
    double diff = Math.Abs(a - b);

    if (a.Equals(b))
    { // shortcut, handles infinities
        return true;
    } 
    else if (a == 0 || b == 0 || absA + absB < MinNormal) 
    {
        // a or b is zero or both are extremely close to it
        // relative error is less meaningful here
        return diff < (epsilon * MinNormal);
    }
    else
    { // use relative error
        return diff / (absA + absB) < epsilon;
    }
}

From Bruce Dawson's paper on comparing floats, you can also compare floats as integers. Closeness is determined by least significant bits.

public static bool AlmostEqual2sComplement( float a, float b, int maxDeltaBits ) 
{
    int aInt = BitConverter.ToInt32( BitConverter.GetBytes( a ), 0 );
    if ( aInt <  0 )
        aInt = Int32.MinValue - aInt;  // Int32.MinValue = 0x80000000

    int bInt = BitConverter.ToInt32( BitConverter.GetBytes( b ), 0 );
    if ( bInt < 0 )
        bInt = Int32.MinValue - bInt;

    int intDiff = Math.Abs( aInt - bInt );
    return intDiff <= ( 1 << maxDeltaBits );
}

EDIT: BitConverter is relatively slow. If you're willing to use unsafe code, then here is a very fast version:

    public static unsafe int FloatToInt32Bits( float f )
    {
        return *( (int*)&f );
    }

    public static bool AlmostEqual2sComplement( float a, float b, int maxDeltaBits )
    {
        int aInt = FloatToInt32Bits( a );
        if ( aInt < 0 )
            aInt = Int32.MinValue - aInt;

        int bInt = FloatToInt32Bits( b );
        if ( bInt < 0 )
            bInt = Int32.MinValue - bInt;

        int intDiff = Math.Abs( aInt - bInt );
        return intDiff <= ( 1 << maxDeltaBits );
    }

Further to Andrew Wang's answer: if the BitConverter method is too slow but you cannot use unsafe code in your project, this struct is ~6x quicker than BitConverter:

[StructLayout(LayoutKind.Explicit)]
public struct FloatToIntSafeBitConverter
{
    public static int Convert(float value)
    {
        return new FloatToIntSafeBitConverter(value).IntValue;
    }

    public FloatToIntSafeBitConverter(float floatValue): this()
    {
        FloatValue = floatValue;
    }

    [FieldOffset(0)]
    public readonly int IntValue;

    [FieldOffset(0)]
    public readonly float FloatValue;
}

(Incidentally, I tried using the accepted solution but it (well my conversion at least) failed some of the unit tests also mentioned in the answer. e.g. assertTrue(nearlyEqual(Float.MIN_VALUE, -Float.MIN_VALUE)); )


Be careful with some answers...

UPDATE 2019-0829, I also included Microsoft decompiled code which should be far better than mine.

1 - You could easily represent any number with 15 significatives digits in memory with a double. See Wikipedia.

2 - The problem come from calculation of floating numbers where you could loose some precision. I mean that a number like .1 could become something like .1000000000000001 ==> after calculation. When you do some calculation, results could be truncated in order to be represented in a double. That truncation brings the error you could get.

3 - To prevent the problem when comparing double values, people introduce an error margin often called epsilon. If 2 floating numbers only have a contextual epsilon as difference, then they are considered equals. double.Epsilon is the smallest number between a double value and its neigbor (next or previous) value.

4 - The difference betwen 2 double values could be more than double.epsilon. The difference between the real double value and the one computed depends on how many calculation you have done and which ones. Many peoples think that it is always double.Epsilon but they are really wrong. To have a great answer please see: Hans Passant answer. The epsilon is based on your context where it depends on the biggest number you reach during your calculation and on the number of calculation you are doing (truncation error accumulate).

5 - This is the code that I use. Be careful that I use my epsilon only for few calculations. Otherwise I multiply my epsilon by 10 or 100.

6 - As noted by SvenL, it is possible that my epsilon is not big enough. I suggest to read SvenL comment. Also, perhaps "decimal" could do the job for your case?

Microsoft decompiled code:

// Decompiled with JetBrains decompiler
// Type: MS.Internal.DoubleUtil
// Assembly: WindowsBase, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35
// MVID: 33C590FB-77D1-4FFD-B11B-3D104CA038E5
// Assembly location: C:\Windows\Microsoft.NET\assembly\GAC_MSIL\WindowsBase\v4.0_4.0.0.0__31bf3856ad364e35\WindowsBase.dll

using MS.Internal.WindowsBase;
using System;
using System.Runtime.InteropServices;
using System.Windows;

namespace MS.Internal
{
  [FriendAccessAllowed]
  internal static class DoubleUtil
  {
    internal const double DBL_EPSILON = 2.22044604925031E-16;
    internal const float FLT_MIN = 1.175494E-38f;

    public static bool AreClose(double value1, double value2)
    {
      if (value1 == value2)
        return true;
      double num1 = (Math.Abs(value1) + Math.Abs(value2) + 10.0) * 2.22044604925031E-16;
      double num2 = value1 - value2;
      if (-num1 < num2)
        return num1 > num2;
      return false;
    }

    public static bool LessThan(double value1, double value2)
    {
      if (value1 < value2)
        return !DoubleUtil.AreClose(value1, value2);
      return false;
    }

    public static bool GreaterThan(double value1, double value2)
    {
      if (value1 > value2)
        return !DoubleUtil.AreClose(value1, value2);
      return false;
    }

    public static bool LessThanOrClose(double value1, double value2)
    {
      if (value1 >= value2)
        return DoubleUtil.AreClose(value1, value2);
      return true;
    }

    public static bool GreaterThanOrClose(double value1, double value2)
    {
      if (value1 <= value2)
        return DoubleUtil.AreClose(value1, value2);
      return true;
    }

    public static bool IsOne(double value)
    {
      return Math.Abs(value - 1.0) < 2.22044604925031E-15;
    }

    public static bool IsZero(double value)
    {
      return Math.Abs(value) < 2.22044604925031E-15;
    }

    public static bool AreClose(Point point1, Point point2)
    {
      if (DoubleUtil.AreClose(point1.X, point2.X))
        return DoubleUtil.AreClose(point1.Y, point2.Y);
      return false;
    }

    public static bool AreClose(Size size1, Size size2)
    {
      if (DoubleUtil.AreClose(size1.Width, size2.Width))
        return DoubleUtil.AreClose(size1.Height, size2.Height);
      return false;
    }

    public static bool AreClose(Vector vector1, Vector vector2)
    {
      if (DoubleUtil.AreClose(vector1.X, vector2.X))
        return DoubleUtil.AreClose(vector1.Y, vector2.Y);
      return false;
    }

    public static bool AreClose(Rect rect1, Rect rect2)
    {
      if (rect1.IsEmpty)
        return rect2.IsEmpty;
      if (!rect2.IsEmpty && DoubleUtil.AreClose(rect1.X, rect2.X) && (DoubleUtil.AreClose(rect1.Y, rect2.Y) && DoubleUtil.AreClose(rect1.Height, rect2.Height)))
        return DoubleUtil.AreClose(rect1.Width, rect2.Width);
      return false;
    }

    public static bool IsBetweenZeroAndOne(double val)
    {
      if (DoubleUtil.GreaterThanOrClose(val, 0.0))
        return DoubleUtil.LessThanOrClose(val, 1.0);
      return false;
    }

    public static int DoubleToInt(double val)
    {
      if (0.0 >= val)
        return (int) (val - 0.5);
      return (int) (val + 0.5);
    }

    public static bool RectHasNaN(Rect r)
    {
      return DoubleUtil.IsNaN(r.X) || DoubleUtil.IsNaN(r.Y) || (DoubleUtil.IsNaN(r.Height) || DoubleUtil.IsNaN(r.Width));
    }

    public static bool IsNaN(double value)
    {
      DoubleUtil.NanUnion nanUnion = new DoubleUtil.NanUnion();
      nanUnion.DoubleValue = value;
      ulong num1 = nanUnion.UintValue & 18442240474082181120UL;
      ulong num2 = nanUnion.UintValue & 4503599627370495UL;
      if (num1 == 9218868437227405312UL || num1 == 18442240474082181120UL)
        return num2 > 0UL;
      return false;
    }

    [StructLayout(LayoutKind.Explicit)]
    private struct NanUnion
    {
      [FieldOffset(0)]
      internal double DoubleValue;
      [FieldOffset(0)]
      internal ulong UintValue;
    }
  }
}

My code:

public static class DoubleExtension
    {
        // ******************************************************************
        // Base on Hans Passant Answer on:
        // https://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        public static bool AboutEquals(this double value1, double value2)
        {
            double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
            return Math.Abs(value1 - value2) <= epsilon;
        }

        // ******************************************************************
        // Base on Hans Passant Answer on:
        // https://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        /// You get really better performance when you can determine the contextual epsilon first.
        /// </summary>
        /// <param name="value1"></param>
        /// <param name="value2"></param>
        /// <param name="precalculatedContextualEpsilon"></param>
        /// <returns></returns>
        public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
        {
            return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
        }

        // ******************************************************************
        public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
        {
            return biggestPossibleContextualValue * 1E-15;
        }

        // ******************************************************************
        /// <summary>
        /// Mathlab equivalent
        /// </summary>
        /// <param name="dividend"></param>
        /// <param name="divisor"></param>
        /// <returns></returns>
        public static double Mod(this double dividend, double divisor)
        {
            return dividend - System.Math.Floor(dividend / divisor) * divisor;
        }

        // ******************************************************************
    }