Integral representation Hurwitz Zeta function
The Hurwitz Zeta function admits a very simple integral representation that can easely be obtained as following. Starting from the definition of the Hurwitz Zeta function.
$$\zeta(s,a)=\sum_{k=0}^{\infty} \frac{1}{\left(k+a\right)^{s}}$$
multiplying both sides of the above equation by $\Gamma(s)$
$$\Gamma(s)\zeta(s,a)=\sum_{k=0}^{\infty} \frac{1}{\left(k+a\right)^{s}}\int_{0}^{\infty}t^{s-1}e^{-t}dt$$
substituting $t\mapsto(k+a)t$
$$\Gamma(s)\zeta(s,a)=\sum_{k=0}^{\infty} \int_{0}^{\infty}t^{s-1}e^{-t(k+a)}dt$$
$$\Gamma(s)\zeta(s,a)= \int_{0}^{\infty}t^{s-1}e^{-ta}\sum_{k=0}^{\infty}e^{-kt}dt$$
Finally arraiving at:
$$\zeta(s,a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{t^{s-1}e^{-ta}}{1-e^{-t}}dt$$
which can be verified here
My question is the folowing, starting from the above integral representation,how can I get the following expression:
$$\zeta(s,a)=\frac{1}{2}a^{-s}+\frac{a^{1-s}}{s-1}+\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{1}{e^{t}-1}-\frac{1}{t}+\frac{1}{2}\right)\frac{t^{s-1}}{e^{at}}dt$$
It appears in the same source, and says that it´s derivable from the first expression, and even gives some hints.
Folowing the hints I got
$$\zeta(s,a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{t^{s-1}e^{-ta}}{1-e^{-t}}dt=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{t^{s-1}e^{-ta}}{e^{-t}(e^{t}-1)}dt$$
$$\zeta(s,a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{(1+e^{-t}-e^{-t})}{e^{-t}(e^{t}-1)}\frac{t^{s-1}}{e^{ta}}dt$$
$$\zeta(s,a)=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{e^{t}}{(e^{t}-1)}\frac{t^{s-1}}{e^{ta}}dt+\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{1}{(e^{t}-1)}\frac{t^{s-1}}{e^{ta}}dt-\frac{1}{\Gamma(s)} \int_{0}^{\infty}\frac{1}{(e^{t}-1)}\frac{t^{s-1}}{e^{ta}}dt$$
However, from this point on I got stuck. I appreciate if someone could show me how to complete the proof.
From $$\int_0^\infty e^{-at} t^{s-1-k}dt =\int_0^\infty e^{-x} (x/a)^{s-1-k}d(x/a)= a^{k-s} \Gamma(s-k)= a^{k-s} \Gamma(s-k+1)/(s-k)$$
you get $$\zeta(s,a)=\frac{1}{2}a^{-s}+\frac{a^{1-s}}{s-1}+\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\frac{1}{1-e^{-t}}-\frac{1}{t}-\frac{1}{2}\right)\frac{t^{s-1}}{e^{at}}dt$$ for $\Re(s) > 1$ and by analytic continuation it stays true for $\Re(s) > -1$.