Proving the congruence $p^{q-1}+q^{p-1} \equiv 1 \pmod{pq}$
$p^{q-1}+q^{p-1}\equiv p^{q-1}\pmod q$
Now using Fermat's Little Theorem $p^{q-1}\equiv1\pmod q\implies p^{q-1}+q^{p-1}\equiv 1\pmod q$
Similarly, $p^{q-1}+q^{p-1}\equiv 1\pmod p$
As $p$ and $q$ both divides $(p^{q-1}+q^{p-1}-1),$ lcm$(p,q)$ will divide $(p^{q-1}+q^{p-1}-1)$
Now, lcm$(p,q)=p\cdot q$
Generalization:
For any two distinct integer $m,n>1$ where $(m,n)=1,$
$(1):m^{\phi(n)}+n^{\phi(m)}\equiv1\pmod {m\cdot n}$ using Euler' Totient theorem
$(2):m^{\lambda(n)}+n^{\lambda(m)}\equiv1\pmod {m\cdot n}$ using Carmichael Function
To your
$$p^{q-1} \equiv 1 \pmod q\text, \qquad q^{p-1} \equiv 1 \pmod p\text,$$
add the fact that
$$p^{q-1} \equiv 0 \pmod p\text, \qquad q^{p-1} \equiv 0 \pmod q\text.$$
Then
$$p^{q-1} + q^{p-1} \equiv 1 \pmod q\text, \qquad p^{q-1} + q^{p-1} \equiv 1 \pmod p\text,$$
and by the Chinese Remainder Theorem,
$$p^{q-1} + q^{p-1} \equiv 1 \pmod {pq}\text.$$