Proving the cross product matrix tranformation identity with an alternative solution

Solution 1:

Using the scalar-triple product: we know that $$ A \cdot (B \times C) = \det[A \ \ B\ \ C], $$ where $A \cdot B = A^TB$ denotes a dot-product (and ${}^T$ denotes a transpose). With that, we can deduce the entries of $(MS) \times (MT)$.

Let $e_1,e_2,e_3$ denote the $x,y,z$ unit vectors. Using the above and the rule $\det(PQ) = \det(P)\det(Q)$, we see that for all $i$,
$$ \begin{align} (Me_i) \cdot [(MS) \times (MT)] & = \det[Me_i \ \ MS\ \ MT] \\ & = \det(M) \det[e_i\ \ S\ \ T] \\ & = \det(M) (e_i \cdot (S\times T)) \\ & = \det(M) (S\times T)_i. \end{align} $$ That is, we have $$ \begin{align} M^T ((MS) \times (MT)) & = \pmatrix{(Me_1)^T\\ (Me_2)^T\\ (Me_3)^T}((MS) \times (MT)) \\ & = \det(M)\pmatrix{(S \times T)_1\\ (S \times T)_2 \\ (S \times T)_3} \\ & = \det(M) (S \times T). \end{align} $$ Solving for $S \times T$, we have $$ M^T ((MS) \times (MT)) = \det(M) (S \times T) \implies (MS) \times (MT) = \det(M)M^{-T} (S \times T), $$ which was what we wanted.