Finding generating function for the recurrence $a_0 = 1$, $a_n = {n \choose 2} + 3a_{n - 1}$

I am trying to find generating function for the recurrence:

  • $a_0 = 1$,
  • $a_n = {n \choose 2} + 3a_{n - 1}$ for every $n \ge 1$.

It looks like this:

  • $a_0 = 1$
  • $a_1 = {1 \choose 2} + 3$
  • $a_2 = {2 \choose 2} + 3{1 \choose 2} + 9$
  • $a_3 = {3 \choose 2} + 3{2 \choose 2} + 9{1 \choose 2} + 27$
  • $a_4 = {4 \choose 2} + 3{3 \choose 2} + 9{2 \choose 2} + 27 {1 \choose 2} + 81$

I know what the generating function of the sequence $3 ^n = (1, 3, 9, 27, 81, \dots)$ is, as well as what the generating functions for some sequences of combinatorial numbers are, but how do I split the sequence up into these pieces I know?

(The problem is those combinatorial numbers "move right" every time. If they were growing left-to-right along with their coefficients, it would be much easier. And there is no constant difference between $a_i$ and $a_{i + 1}$.)


Solution 1:

Let $A(x)=\sum_{n=0}^\infty a_nx^n$. Then \begin{eqnarray} A(x)&=&1+\sum_{n=1}^\infty a_{n}x^n\\ &=&1+\sum_{n=1}^\infty (3a_{n-1}+\frac{1}{2}n(n-1))x^n\\ &=&1+3xA(x)+\frac{1}{2}\sum_{n=1}^\infty n(n-1)x^n. \end{eqnarray} Note $\sum_{n=0}^\infty x^n=\frac{1}{1-x}$ for $|x|<1$. Differentiating this twice, you can give $$ \sum_{n=2}^\infty n(n-1)x^{n-2}=\frac{2}{(1-x)^3}. $$ Thus $$ A(x)=1+3xA(x)+\frac{x^2}{(1-x)^3} $$ from which you can get $A(x)$.

Solution 2:

A related problem. Assume $ F(x) = \sum_{n=0}^{\infty}a_n x^n $, then $$ a_n = {n \choose 2} + 3a_{n - 1} \implies a_{n+1} = {n+1 \choose 2} + 3a_{n}$$

$$ \sum_{n=0}^{\infty} a_{n+1} x^n = \frac{1}{2}\sum_{n=0}^{\infty}n(n+1)x^n + 3\sum_{n=0}^{\infty}a_{n}x^n $$

$$ \implies \sum_{n=1}^{\infty} a_{n} x^{n-1} = \frac{1}{2}\sum_{n=1}^{\infty}nx^{n}+\frac{1}{2}\sum_{n=1}^{\infty}n^2x^{n} +3F(x) $$

$$ \implies \frac{1}{x}F(x)-\frac{a_0}{x}-3F(x) = \frac{1}{2}\sum_{n=1}^{\infty}nx^{n}+\frac{1}{2}\sum_{n=1}^{\infty}n^2x^{n} $$

$$\implies \left(\frac{1}{x}-3 \right)F(x)=\frac{1}{x}+\frac{1}{2}\frac{x}{(x-1)^2}-\frac{1}{2}\frac{x(x+1)}{(x-1)^3} $$

$$ \implies \left(\frac{1}{x}-3 \right)F(x)=\frac{1}{x}-\frac{x}{(x-1)^3} $$

$$ \implies F(x)=\frac{x}{1-3x}\left( \frac{1}{x}-\frac{x}{(x-1)^3} \right). $$