pandas add column to groupby dataframe
I have this simple dataframe df
:
df = pd.DataFrame({'c':[1,1,1,2,2,2,2],'type':['m','n','o','m','m','n','n']})
my goal is to count values of type
for each c
, and then add a column with the size of c
. So starting with:
In [27]: g = df.groupby('c')['type'].value_counts().reset_index(name='t')
In [28]: g
Out[28]:
c type t
0 1 m 1
1 1 n 1
2 1 o 1
3 2 m 2
4 2 n 2
the first problem is solved. Then I can also:
In [29]: a = df.groupby('c').size().reset_index(name='size')
In [30]: a
Out[30]:
c size
0 1 3
1 2 4
How can I add the size
column directly to the first dataframe? So far I used map
as:
In [31]: a.index = a['c']
In [32]: g['size'] = g['c'].map(a['size'])
In [33]: g
Out[33]:
c type t size
0 1 m 1 3
1 1 n 1 3
2 1 o 1 3
3 2 m 2 4
4 2 n 2 4
which works, but is there a more straightforward way to do this?
Solution 1:
Use transform
to add a column back to the orig df from a groupby
aggregation, transform
returns a Series
with its index aligned to the orig df:
In [123]:
g = df.groupby('c')['type'].value_counts().reset_index(name='t')
g['size'] = df.groupby('c')['type'].transform('size')
g
Out[123]:
c type t size
0 1 m 1 3
1 1 n 1 3
2 1 o 1 3
3 2 m 2 4
4 2 n 2 4
Solution 2:
Another solution with transform
len
:
df['size'] = df.groupby('c')['type'].transform(len)
print df
c type size
0 1 m 3
1 1 n 3
2 1 o 3
3 2 m 4
4 2 m 4
5 2 n 4
6 2 n 4
Another solution with Series.map
and Series.value_counts
:
df['size'] = df['c'].map(df['c'].value_counts())
print (df)
c type size
0 1 m 3
1 1 n 3
2 1 o 3
3 2 m 4
4 2 m 4
5 2 n 4
6 2 n 4