$\lim_{n\to\infty} \underbrace{\int_{0}^{1}\cdots \int_{0}^{1}}_{n}\frac{x_1^{505}+\cdots +x_n^{505}}{x_1^{2020}+\cdots +x_n^{2020}}dx_1\cdots dx_n$ [duplicate]
Solution 1:
Here's a solution that's entirely analytical.
Let $I_n=\int_{0}^{1}\int_{0}^{1}\cdot\cdot\cdot\int_{0}^{1}\frac{x_{1}^{505}+x_{2}^{505}+...+x_{n}^{505}}{x_{1}^{2020}+x_{2}^{2020}+...+x_{n}^{2020}}\,dx_{1}\,dx_{2}\,...\,dx_{n}$
Then $$\begin{split} I_n &= \int_{0}^{1}\cdot\cdot\cdot\int_{0}^{1}\left(x_{1}^{505}+...+x_{n}^{505}\right)\int_0^{+\infty}e^{-(x_1^{2020}+...+x_n^{2020})t}\,dt\,dx_{1}\,...\,dx_{n}\\ &=\int_0^{+\infty}\int_{0}^{1}\cdot\cdot\cdot\int_{0}^{1}\left(x_{1}^{505}+...+x_{n}^{505}\right)e^{-(x_1^{2020}+...+x_n^{2020})t}\,dx_{1}\,...\,dx_{n}\,dt\\ &=\int_0^{+\infty}\int_{0}^{1}\cdot\cdot\cdot\int_{0}^{1}\left(x_{1}^{505}+...+x_{n}^{505}\right)e^{-tx_1^{2020}}...e^{-tx_n^{2020}}\,dx_{1}\,...\,dx_{n}\,dt\\ &= n\int_0^{+\infty}\int_0^1x_1^{505}e^{-x_1^{2020}t}dx_1\left( \int_0^1 e^{-ty^{2020}}dy\right)^{n-1}dt \,\,\text{(by symmetry)}\\ &= \int_0^{+\infty}\int_0^1 x^{505}e^{-\frac u n x^{2020}}dx\left( \int_0^1 e^{-\frac u n y^{2020}}dy\right)^{n-1} du\,\,\text{ (with }u=nt\text{)}\\ &= \int_0^{+\infty}\frac{\int_0^1 x^{505}e^{-\frac u n x^{2020}}dx}{\int_0^1 e^{-\frac u n y^{2020}}dy}\left( \int_0^1 e^{-\frac u n y^{2020}}dy\right)^n du \end{split}$$ Now, for a given $u>0$ $$\begin{split} \left( \int_0^1 e^{-\frac u n y^{2020}}dy\right)^n &= \exp\left( n\ln \int_0^1e^{-\frac u n y^{2020}}dy\right)\\ &= \exp\left( n\ln \int_0^1\left(1-\frac u n y^{2020}+\mathcal O(\frac 1 {n^2})\right)dy\right)\\ &=\exp\left( n\ln \left(1 - \frac u {2021n} + \mathcal O(\frac 1 {n^2}) \right)\right)\\ &=e^{-\frac u {2021}}+o(1) \end{split}$$ and the same integral is dominated by 1. Therefore by the Dominated Convergence Theorem: $$ \lim_{n\rightarrow+\infty}I_n = \int_0^{+\infty}\frac{\int_0^1 x^{505}dx}{\int_0^1 1dy}e^{-\frac u {2021}} du = \frac{2021}{506} $$
Solution 2:
I was the author of this question! Glad to see it is still engaging minds ~1 year after the initial contest. :) Your answer is correct, but as you noted your reasoning is not really rigorous, although you are on the right track.
To give you a pointer, see if you can find a statistical interpretation of that integral instead of geometric.