Fill in null with previously known good value with pyspark
Solution 1:
I believe I have a much simpler solution than the accepted. It is using Functions too, but uses the function called 'LAST' and ignores nulls.
Let's re-create something similar to the original data:
import sys
from pyspark.sql.window import Window
import pyspark.sql.functions as func
d = [{'session': 1, 'ts': 1}, {'session': 1, 'ts': 2, 'id': 109}, {'session': 1, 'ts': 3}, {'session': 1, 'ts': 4, 'id': 110}, {'session': 1, 'ts': 5}, {'session': 1, 'ts': 6}]
df = spark.createDataFrame(d)
This prints:
+-------+---+----+
|session| ts| id|
+-------+---+----+
| 1| 1|null|
| 1| 2| 109|
| 1| 3|null|
| 1| 4| 110|
| 1| 5|null|
| 1| 6|null|
+-------+---+----+
Now, if we use the window function LAST:
df.withColumn("id", func.last('id', True).over(Window.partitionBy('session').orderBy('ts').rowsBetween(-sys.maxsize, 0))).show()
We just get:
+-------+---+----+
|session| ts| id|
+-------+---+----+
| 1| 1|null|
| 1| 2| 109|
| 1| 3| 109|
| 1| 4| 110|
| 1| 5| 110|
| 1| 6| 110|
+-------+---+----+
Hope it helps!
Solution 2:
This seems to be doing the trick using Window functions:
import sys
from pyspark.sql.window import Window
import pyspark.sql.functions as func
def fill_nulls(df):
df_na = df.na.fill(-1)
lag = df_na.withColumn('id_lag', func.lag('id', default=-1)\
.over(Window.partitionBy('session')\
.orderBy('timestamp')))
switch = lag.withColumn('id_change',
((lag['id'] != lag['id_lag']) &
(lag['id'] != -1)).cast('integer'))
switch_sess = switch.withColumn(
'sub_session',
func.sum("id_change")
.over(
Window.partitionBy("session")
.orderBy("timestamp")
.rowsBetween(-sys.maxsize, 0))
)
fid = switch_sess.withColumn('nn_id',
func.first('id')\
.over(Window.partitionBy('session', 'sub_session')\
.orderBy('timestamp')))
fid_na = fid.replace(-1, 'null')
ff = fid_na.drop('id').drop('id_lag')\
.drop('id_change')\
.drop('sub_session').\
withColumnRenamed('nn_id', 'id')
return ff
Here is the full null_test.py.
Solution 3:
@Oleksiy
's answer is great, but didn't fully work for my requirements. Within a session, if multiple null
s are observed, all are filled with the first non-null
for the session. I needed the last non-null
value to propagate forward.
The following tweak worked for my use case:
def fill_forward(df, id_column, key_column, fill_column):
# Fill null's with last *non null* value in the window
ff = df.withColumn(
'fill_fwd',
func.last(fill_column, True) # True: fill with last non-null
.over(
Window.partitionBy(id_column)
.orderBy(key_column)
.rowsBetween(-sys.maxsize, 0))
)
# Drop the old column and rename the new column
ff_out = ff.drop(fill_column).withColumnRenamed('fill_fwd', fill_column)
return ff_out