How do I detect if a Spark DataFrame has a column

When I create a DataFrame from a JSON file in Spark SQL, how can I tell if a given column exists before calling .select

Example JSON schema:

{
  "a": {
    "b": 1,
    "c": 2
  }
}

This is what I want to do:

potential_columns = Seq("b", "c", "d")
df = sqlContext.read.json(filename)
potential_columns.map(column => if(df.hasColumn(column)) df.select(s"a.$column"))

but I can't find a good function for hasColumn. The closest I've gotten is to test if the column is in this somewhat awkward array:

scala> df.select("a.*").columns
res17: Array[String] = Array(b, c)

Just assume it exists and let it fail with Try. Plain and simple and supports an arbitrary nesting:

import scala.util.Try
import org.apache.spark.sql.DataFrame

def hasColumn(df: DataFrame, path: String) = Try(df(path)).isSuccess

val df = sqlContext.read.json(sc.parallelize(
  """{"foo": [{"bar": {"foobar": 3}}]}""" :: Nil))

hasColumn(df, "foobar")
// Boolean = false

hasColumn(df, "foo")
// Boolean = true

hasColumn(df, "foo.bar")
// Boolean = true

hasColumn(df, "foo.bar.foobar")
// Boolean = true

hasColumn(df, "foo.bar.foobaz")
// Boolean = false

Or even simpler:

val columns = Seq(
  "foobar", "foo", "foo.bar", "foo.bar.foobar", "foo.bar.foobaz")

columns.flatMap(c => Try(df(c)).toOption)
// Seq[org.apache.spark.sql.Column] = List(
//   foo, foo.bar AS bar#12, foo.bar.foobar AS foobar#13)

Python equivalent:

from pyspark.sql.utils import AnalysisException
from pyspark.sql import Row


def has_column(df, col):
    try:
        df[col]
        return True
    except AnalysisException:
        return False

df = sc.parallelize([Row(foo=[Row(bar=Row(foobar=3))])]).toDF()

has_column(df, "foobar")
## False

has_column(df, "foo")
## True

has_column(df, "foo.bar")
## True

has_column(df, "foo.bar.foobar")
## True

has_column(df, "foo.bar.foobaz")
## False

Another option which I normally use is

df.columns.contains("column-name-to-check")

This returns a boolean


Actually you don't even need to call select in order to use columns, you can just call it on the dataframe itself

// define test data
case class Test(a: Int, b: Int)
val testList = List(Test(1,2), Test(3,4))
val testDF = sqlContext.createDataFrame(testList)

// define the hasColumn function
def hasColumn(df: org.apache.spark.sql.DataFrame, colName: String) = df.columns.contains(colName)

// then you can just use it on the DF with a given column name
hasColumn(testDF, "a")  // <-- true
hasColumn(testDF, "c")  // <-- false

Alternatively you can define an implicit class using the pimp my library pattern so that the hasColumn method is available on your dataframes directly

implicit class DataFrameImprovements(df: org.apache.spark.sql.DataFrame) {
    def hasColumn(colName: String) = df.columns.contains(colName)
}

Then you can use it as:

testDF.hasColumn("a") // <-- true
testDF.hasColumn("c") // <-- false

Try is not optimal as the it will evaluate the expression inside Try before it takes the decision.

For large data sets, use the below in Scala:

df.schema.fieldNames.contains("column_name")