Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$
For a slightly different solution,
$2\cos^2 A-2\sin^2 B$
$=2\cos^2 A-1+1-2\sin^2 B$
$=\cos 2A+\cos 2B$
$=2\cos (A+B) \cos (A-B)$
and halve each side.
You can use the addition theorem which states that $$\cos(\alpha+\beta)=\cos(\alpha)\cdot \cos(\beta) -\sin(\alpha)\sin(\beta)$$
$$\cos(\alpha + \beta) \cdot \cos(\alpha -\beta)= ( \cos(\alpha)\cos(\beta) -\sin(\alpha)\sin(\beta))\cdot (\cos(\alpha) \cdot \cos(-\beta)-\sin(\alpha)\cdot \sin(-\beta))$$ As $\cos(x)=\cos(-x)$ and $\sin(x)=-\sin(-x)$ this is equal to $$(\cos(\alpha)\cos(\beta)-\sin(\alpha)\sin(\beta))\cdot (\cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta))$$ With the third binom you get $$\cos^2(\alpha) \cos^2(\beta) -\sin^2(\alpha)\sin^2(\beta)$$ As $\cos^2(\beta)+\sin^2(\beta)=1$ we have $$\cos^2(\alpha)(1-\sin^2(\beta))-(1-\cos^2(\alpha))\sin^2(\beta)$$ Multplying it out gives you $$\cos^2(\alpha) -\sin^2(\beta)\cos^2(\alpha)-\sin^2(\beta)+\cos^2(\alpha)\sin^2 (\beta)$$ And this is $$\cos^2(\alpha)-\sin^2(\beta)$$
Another way: $$2\cos(\alpha)\cdot \cos(\beta)=\cos(\alpha+\beta) + \cos(\alpha-\beta)$$ Using this in your formula gives us $$\cos(A+B)\cdot \cos(A-B)=\frac{1}{2}\left( \cos(2A) + \cos(-2B)\right)=\frac{1}{2} \left(\cos(2 A)+ \cos(2 B)\right)$$ As $\cos(2 A)=1-2\sin^2(A)$ and $\cos(2 B) = 1-2 \sin^2 (B)$ this is equal to $$1-\sin^2(A) -\sin^2 (B)=\cos^2(A)-\sin^2(B)$$
Another way of looking at it:
$$\begin{align*} \cos(A+B)\cos(A-B) &= \frac14\left(e^{i(A+B)}+\frac{1}{e^{i(A+B)}}\right)\left(e^{i(A-B)}+\frac{1}{e^{i(A-B)}}\right) \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + 2 - 2 + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \frac14\left[(e^{iA})^2 + \frac{1}{(e^{iA})^2} + 2\right] + \frac14\left[ - 2 + (e^{iB})^2 + \frac{1}{(e^{iB})^2}\right] \\ &= \left(\frac{e^{iA} + e^{-iA}}{2}\right)^2 - \left( \frac{e^{iB}-e^{-iB}}{2i}\right)^2 \\ &= \cos^2 A - \sin^2 B. \end{align*} $$
Maybe you didn't see you can use the formula $(x+y)(x-y)=x^2-y^2$. Other than that, I don't see any other simpler method.
Here is an interesting different way: Let
$$x = \cos(A+B)\cos(A-B) \\ y = \sin(A+B)\sin(A-B)$$
Then,
$$x+y = \cos(A+B-A+B) = \cos(2B) \\ x-y = \cos(A+B+A-B) = \cos(2A)$$
You can add these to get $2x$ or subtract them to get $2y$. Then expand using the double-angle formulas. This gives you two trig product formulas at the same time.