Simpler way to compute a definite integral without resorting to partial fractions?
Perhaps this is simpler.
Make the substitution $\displaystyle x^{2/3} = t$. Giving us
$\displaystyle \frac{2 x^{1/3}}{3 x^{2/3}} dx = dt$, i.e $\displaystyle x^{1/3} dx = \frac{3}{2} t dt$
This gives us that the integral is
$$I = \frac{3}{2} \int_{0}^{\infty} \frac{t}{1 + t^3} \ \text{d}t$$
Now make the substitution $t = \frac{1}{z}$ to get
$$I = \frac{3}{2} \int_{0}^{\infty} \frac{1}{1 + t^3} \ \text{d}t$$
Add them up, cancel the $\displaystyle 1+t$, write the denominator ($\displaystyle t^2 - t + 1$) as $\displaystyle (t+a)^2 + b^2$ and get the answer.
By using techniques of complex analysis ($\text{Residue Theory}$) one can actually show that $$\int\limits_{0}^{\infty} \frac{x^{a-1}}{1+x^{b}} \ \text{dx} = \frac{\pi}{b \sin(\pi{a}/b)}, \qquad 0 < a <b$$
You can obtain the value of your $\text{Integral}$ by putting $a=\frac{4}{3}$ and $b=2$.
Set $$I = \int\limits_{0}^{\infty} \frac{x^{a-1}}{1+x^{b}} \ \text{dx}$$ and integrate $$f(z) = \frac{z^{a-1}}{1+z^{b}} = \frac{|z|^{a-1} \cdot e^{i(a-1)\text{arg}(z)}}{1+|z|^{b}e^{ib\text{arg}(z)}}$$
Simple pole at $z_{1} = e^{\pi{i}/b}$ and hence $$\text{Res} \Biggl[\frac{z^{a-1}}{1+z^{b}}, e^{\pi{i}/b}\Biggr] = \frac{z^{a-1}}{bz^{b-1}}\Biggl|_{z =e^{\pi i / b}} = -\frac{1}{b}e^{\pi i a/b}$$
Integrate along $\gamma_{1}$, and let $R \to \infty$ and let $ \epsilon \to 0^{+}$. This gives, \begin{align*} \int\limits_{\gamma_{1}} f(z) \ dz & = \int\limits_{\gamma_{1}} \frac{|z|^{a-1} \cdot e^{i(a-1)\text{arg}(z)}}{1+|z|^{b}e^{ib\text{arg}(z)}} \ dz \\ &= \int\limits_{\epsilon}^{R} \frac{x^{a-1}}{1+x^{b}} \to \int\limits_{0}^{\infty} \frac{x^{a-1}}{1+x^{b}} \ dx =I \end{align*}
Integrate along $\gamma_{2}$, and let $R \to \infty$. This gives $0 < a < b$ and $$\Biggl|\int\limits_{\gamma_{2}} f(z) dz \Biggr| \leq \frac{R^{a-1}}{R^{b}-1} \cdot \frac{2\pi R}{b} \sim \frac{2 \pi}{b R^{b-a}} \to 0$$
Integrate along $\gamma_{3}$ and let $R \to \infty$ and $\epsilon \to 0^{+}$. This gives \begin{align*} \int\limits_{\gamma_{3}} f(z) \ dz &= \int\limits_{\gamma_{3}} \frac{|z|^{a-1} \cdot e^{i(a-1)\text{arg}(z)}}{1+|z|^{b}e^{ib\text{arg}(z)}} = \Biggl[\begin{array}{c} z=x e^{2\pi i/b} \\ dz=e^{2\pi i/b} \ dx \end{array}\Biggr] \\ &= \int\limits_{R}^{\epsilon} \frac{x^{a-1}e^{2\pi i(a-1)/b}}{1+x^{b}} \cdot e^{2\pi i b} \ dx \to \int\limits_{\infty}^{0} \frac{x^{a-1}e^{2\pi i(a-1)/b}}{1+x^{b}} \cdot e^{2\pi i b} \ dx \\ &= -e^{2\pi ia/b}I \end{align*}
Integrate along $\gamma_{4}$ and let $\epsilon \to 0^{+}$. This gives $0 < a <b$, $$\Biggl|\int\limits_{\gamma_{4}} f(z) \ dz \Biggr| \leq \frac{\epsilon^{a-1}}{1-\epsilon^{b}} \cdot \frac{2\pi\epsilon}{b} \sim \frac{2\pi\epsilon}{b} \to 0$$
Using the $\text{Residue Theorem}$ and letting $R \to \infty$ and $\epsilon \to 0^{+}$, we obtain that $$ I + 0 - e^{2\pi a/b}I + 0 = 2\pi i \cdot \Bigl(-\frac{1}{b} e^{\pi ia/b}\Bigr)$$ This yields, $$(e^{-\pi i a/b} - e^{\pi i a./b})I= -\frac{2\pi i}{b}$$ and hence solving for $I$, we have $$I= \frac{2\pi i}{b \cdot (e^{\pi ia/b} - e^{-\pi i a/b})}=\frac{\pi}{b \sin(\pi a/b)}$$
Here is a different way I am quite fond of:
Call our integral I, that is set $$I=\int_0^\infty \frac{\sqrt[3]{x}}{1+x^2}\,dx$$ Let $u=1+x^{2}$ so that $du=2x \, dx$. Since $$\sqrt[3]{x} \, dx=\frac{1}{2}\frac{2x \, dx}{\sqrt[3]{x^{2}}}=\frac{1}{2}\frac{u}{\left({u-1}\right)^{\frac{1}{3}}}\,du$$ we have that$$I=\frac{1}{2}\int_{1}^{\infty}\frac{1}{u\left(u-1\right)^{\frac{1}{3}}}\,du.$$ Let $u=\frac{1}{v}$ so that this becomes $$\frac{1}{2}\int_{0}^{1}\frac{1}{\frac{1}{v}\left(\frac{1}{v}-1\right)^{\frac{1}{3}}}\frac{1}{v^{2}}\,dv=\frac{1}{2}\int_{0}^{1}v^{-\frac{2}{3}}\left(1-v\right)^{-\frac{1}{3}}\,dv=\frac{1}{2}\text{B}\left(\frac{1}{3},\frac{2}{3}\right)$$ where $\text{B}(x,y)$ is the beta function. Since $$\text{B}(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$ we have that $$I=\frac{1}{2}\frac{\Gamma(\frac{1}{3})\Gamma(\frac{2}{3})}{\Gamma(1)}.$$ Since $\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin\pi s}$ it follows that $$I=\frac{\pi}{2\sin\pi/3}=\frac{\pi}{\sqrt{3}}.$$ Hope that helps,
Also it is worth mentioning that numerically, Wolfram Alpha agrees with this answer.
Using the same technique as in my previous answer we can generalize, and find the Mellin Transform:
Consider $$I(\alpha,\beta)=\int_{0}^{\infty}\frac{u^{\alpha-1}}{1+u^{\beta}}du=\mathcal{M}\left(\frac{1}{1+u^{\beta}}\right)(\alpha)$$ Let $x=1+u^{\beta}$ so that $u=(x-1)^{\frac{1}{\beta}}$. Then we have $$I(\alpha,\beta)=\frac{1}{\beta}\int_{1}^{\infty}\frac{(x-1)^{\frac{\alpha-1}{\beta}}}{x}(x-1)^{\frac{1}{\beta}-1}dx.$$ Setting $x=\frac{1}{v}$ we obtain $$I(\alpha,\beta)=\frac{1}{\beta}\int_{0}^{1}v^{-\frac{\alpha}{\beta}}(1-v)^{\frac{\alpha}{\beta}-1}dv=\frac{1}{\beta}\text{B}\left(-\frac{\alpha}{\beta}+1,\ \frac{\alpha}{\beta}\right).$$
Using the properties of the Beta and Gamma functions, this equals $$\frac{1}{\beta}\frac{\Gamma\left(1-\frac{\alpha}{\beta}\right)\Gamma\left(\frac{\alpha}{\beta}\right)}{\Gamma(1)}=\frac{\pi}{\beta\sin\left(\frac{\pi\alpha}{\beta}\right)}.$$
Let's generalize the problem. We will evaluate $$ \int_0^\infty\dfrac{x^{\large a-1}}{1+x^b}\ dx. $$ Let $$y=\dfrac{1}{1+x^b}\quad\Rightarrow\quad x=\left(\dfrac{1-y}{y}\right)^{\large\frac1b}\quad\Rightarrow\quad dx=-\left(\dfrac{1-y}{y}\right)^{\large\frac1b-1}\ \dfrac{dy}{by^2}\ ,$$ then \begin{align} \int_0^\infty\dfrac{x^{\large a-1}}{1+x^b}\ dx&=\int_0^1 y\left(\dfrac{1-y}{y}\right)^{\large\frac{a-1}b}\left(\dfrac{1-y}{y}\right)^{\large\frac1b-1}\ \dfrac{dy}{by^2}\\&=\frac1b\int_0^1y^{\large1-\frac{a}{b}-1}(1-y)^{\large\frac{a}{b}-1}\ dy, \end{align} where the last integral in RHS is Beta function. $$ \text{B}(x,y)=\int_0^1t^{\ \large x-1}\ (1-t)^{\ \large y-1}\ dt=\frac{\Gamma(x)\cdot\Gamma(y)}{\Gamma(x+y)}. $$ Hence \begin{align} \int_0^\infty\dfrac{x^{\large a-1}}{1+x^b}\ dx&=\frac1b\int_0^1y^{\large1-\frac{a}{b}-1}(1-y)^{\large\frac{a}{b}-1}\ dy\\&=\frac1b\cdot\Gamma\left(1-\frac{a}{b}\right)\cdot\Gamma\left(\frac{a}{b}\right)\\&=\large{\color{blue}{\frac{\pi}{b\sin\left(\frac{a\pi}{b}\right)}}}. \end{align} The last part uses Euler's reflection formula for Gamma function provided $0<a<b$. Thus $$ \large\int_0^\infty\dfrac{\sqrt[3]{x}}{1+x^2}\ dx=\int_0^\infty\dfrac{x^{\large\frac43-1}}{1+x^2}\ dx=\frac{\pi}{2\sin\left(\frac{2\pi}{3}\right)}=\color{blue}{\frac\pi3\sqrt{3}}. $$