Functions defined by integrals (problem 10.23 from Apostol's Mathematical Analysis)
Let $f(x,y)=\frac{\sin(xy)}{x(x^2+1)}$. Then $$f_{yy}(x,y)-f(x,y)=-\frac{x\sin(xy)}{x^2+1}-\frac{\sin(xy)}{x(x^2+1)}=-\frac{\sin(xy)}{x}$$ It follows that $$F''(y)-F(y)=\int_0^\infty -\frac{\sin(xy)}{y} dx=-\int_0^\infty \frac{\sin(xy)}{xy} \,d(xy)=-\pi/2$$ Then $F(y)$ is a solution to the differential equation $z''-z+\frac{pi}{2}=0$. It follos that $F(y)=ae^y+be^{-y}+\frac{\pi}{2}$. From the definition of $F(y)$ one can check that $\lim_{y\to 0} F(y)=0$ and $\lim_{y\to 0} F'(y)=\pi/2$. Then $a+b+\pi/2=0$ and $a-b=\pi/2$. Solving for $a$ and $b$ we have $a=0$ and $b=-\pi/2$. Therefore $$F(y)=\frac{\pi}{2}(1-e^{-y})$$. Let $$G(y):=\int_{0}^{\infty}\frac{\sin xy}{x(x^{2}+a^{2})}dx.$$By substitution $t=x/a$ one can show that $G(y)=\frac{F(ay)}{a^2}=\frac{\pi}{2a^2}(1-e^{-ay})$ and then $$\begin{align*}G'(y)&=\frac{F'(ay)}{a}=\frac{\pi e^{-ay}}{2a}\\G''(y)&=F''(ay)=-\frac{\pi}{2}e^{-ay}\end{align*}$$