Spark SQL: apply aggregate functions to a list of columns
There are multiple ways of applying aggregate functions to multiple columns.
GroupedData
class provides a number of methods for the most common functions, including count
, max
, min
, mean
and sum
, which can be used directly as follows:
-
Python:
df = sqlContext.createDataFrame( [(1.0, 0.3, 1.0), (1.0, 0.5, 0.0), (-1.0, 0.6, 0.5), (-1.0, 5.6, 0.2)], ("col1", "col2", "col3")) df.groupBy("col1").sum() ## +----+---------+-----------------+---------+ ## |col1|sum(col1)| sum(col2)|sum(col3)| ## +----+---------+-----------------+---------+ ## | 1.0| 2.0| 0.8| 1.0| ## |-1.0| -2.0|6.199999999999999| 0.7| ## +----+---------+-----------------+---------+
-
Scala
val df = sc.parallelize(Seq( (1.0, 0.3, 1.0), (1.0, 0.5, 0.0), (-1.0, 0.6, 0.5), (-1.0, 5.6, 0.2)) ).toDF("col1", "col2", "col3") df.groupBy($"col1").min().show // +----+---------+---------+---------+ // |col1|min(col1)|min(col2)|min(col3)| // +----+---------+---------+---------+ // | 1.0| 1.0| 0.3| 0.0| // |-1.0| -1.0| 0.6| 0.2| // +----+---------+---------+---------+
Optionally you can pass a list of columns which should be aggregated
df.groupBy("col1").sum("col2", "col3")
You can also pass dictionary / map with columns a the keys and functions as the values:
-
Python
exprs = {x: "sum" for x in df.columns} df.groupBy("col1").agg(exprs).show() ## +----+---------+ ## |col1|avg(col3)| ## +----+---------+ ## | 1.0| 0.5| ## |-1.0| 0.35| ## +----+---------+
-
Scala
val exprs = df.columns.map((_ -> "mean")).toMap df.groupBy($"col1").agg(exprs).show() // +----+---------+------------------+---------+ // |col1|avg(col1)| avg(col2)|avg(col3)| // +----+---------+------------------+---------+ // | 1.0| 1.0| 0.4| 0.5| // |-1.0| -1.0|3.0999999999999996| 0.35| // +----+---------+------------------+---------+
Finally you can use varargs:
-
Python
from pyspark.sql.functions import min exprs = [min(x) for x in df.columns] df.groupBy("col1").agg(*exprs).show()
-
Scala
import org.apache.spark.sql.functions.sum val exprs = df.columns.map(sum(_)) df.groupBy($"col1").agg(exprs.head, exprs.tail: _*)
There are some other way to achieve a similar effect but these should more than enough most of the time.
See also:
- Multiple Aggregate operations on the same column of a spark dataframe
Another example of the same concept - but say - you have 2 different columns - and you want to apply different agg functions to each of them i.e
f.groupBy("col1").agg(sum("col2").alias("col2"), avg("col3").alias("col3"), ...)
Here is the way to achieve it - though I do not yet know how to add the alias in this case
See the example below - Using Maps
val Claim1 = StructType(Seq(StructField("pid", StringType, true),StructField("diag1", StringType, true),StructField("diag2", StringType, true), StructField("allowed", IntegerType, true), StructField("allowed1", IntegerType, true)))
val claimsData1 = Seq(("PID1", "diag1", "diag2", 100, 200), ("PID1", "diag2", "diag3", 300, 600), ("PID1", "diag1", "diag5", 340, 680), ("PID2", "diag3", "diag4", 245, 490), ("PID2", "diag2", "diag1", 124, 248))
val claimRDD1 = sc.parallelize(claimsData1)
val claimRDDRow1 = claimRDD1.map(p => Row(p._1, p._2, p._3, p._4, p._5))
val claimRDD2DF1 = sqlContext.createDataFrame(claimRDDRow1, Claim1)
val l = List("allowed", "allowed1")
val exprs = l.map((_ -> "sum")).toMap
claimRDD2DF1.groupBy("pid").agg(exprs) show false
val exprs = Map("allowed" -> "sum", "allowed1" -> "avg")
claimRDD2DF1.groupBy("pid").agg(exprs) show false
Current answers are perfectly correct on how to create the aggregations, but none actually address the column alias/renaming that is also requested in the question.
Typically, this is how I handle this case:
val dimensionFields = List("col1")
val metrics = List("col2", "col3", "col4")
val columnOfInterests = dimensions ++ metrics
val df = spark.read.table("some_table")
.select(columnOfInterests.map(c => col(c)):_*)
.groupBy(dimensions.map(d => col(d)): _*)
.agg(metrics.map( m => m -> "sum").toMap)
.toDF(columnOfInterests:_*) // that's the interesting part
The last line essentially renames every columns of the aggregated dataframe to the original fields, essentially changing sum(col2)
and sum(col3)
to simply col2
and col3
.