AttributeError: Can only use .dt accessor with datetimelike values
Solution 1:
Your problem here is that to_datetime
silently failed so the dtype remained as str/object
, if you set param errors='coerce'
then if the conversion fails for any particular string then those rows are set to NaT
.
df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
So you need to find out what is wrong with those specific row values.
See the docs
Solution 2:
First you need to define the format of date column.
df['Date'] = pd.to_datetime(df.Date, format='%Y-%m-%d %H:%M:%S')
For your case base format can be set to;
df['Date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
After that you can set/change your desired output as follows;
df['Date'] = df['Date'].dt.strftime('%Y-%m-%d')
Solution 3:
Your problem here is that the dtype of 'Date' remained as str/object. You can use the parse_dates
parameter when using read_csv
import pandas as pd
file = '/pathtocsv.csv'
df = pd.read_csv(file, sep = ',', parse_dates= [col],encoding='utf-8-sig', usecols= ['Date', 'ids'],)
df['Month'] = df['Date'].dt.month
From the documentation for the parse_dates
parameter
parse_dates : bool or list of int or names or list of lists or dict, default False
The behavior is as follows:
- boolean. If True -> try parsing the index.
- list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
- list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
- dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
If a column or index cannot be represented as an array of datetimes, say because of an unparseable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use
pd.to_datetime
afterpd.read_csv
. To parse an index or column with a mixture of timezones, specifydate_parser
to be a partially-appliedpandas.to_datetime()
withutc=True
. See Parsing a CSV with mixed timezones for more.Note: A fast-path exists for iso8601-formatted dates.
The relevant case for this question is the "list of int or names" one.
col is the columns index of 'Date' which parses as a separate date column.
Solution 4:
#Convert date into the proper format so that date time operation can be easily performed
df_Time_Table["Date"] = pd.to_datetime(df_Time_Table["Date"])
# Cal Year
df_Time_Table['Year'] = df_Time_Table['Date'].dt.strftime('%Y')