I am having a Spark SQL DataFrame with data and what I'm trying to get is all the rows preceding current row in a given date range. So for example I want to have all the rows from 7 days back preceding given row. I figured out I need to use a Window Function like:

Window \
    .partitionBy('id') \
    .orderBy('start')

and here comes the problem. I want to have a rangeBetween 7 days, but there is nothing in the Spark docs I could find on this. Does Spark even provide such option? For now I'm just getting all the preceding rows with:

.rowsBetween(-sys.maxsize, 0)

but would like to achieve something like:

.rangeBetween("7 days", 0)

If anyone could help me on this one I'll be very grateful. Thanks in advance!


Spark >= 2.3

Since Spark 2.3 it is possible to use interval objects using SQL API, but the DataFrame API support is still work in progress.

df.createOrReplaceTempView("df")

spark.sql(
    """SELECT *, mean(some_value) OVER (
        PARTITION BY id 
        ORDER BY CAST(start AS timestamp) 
        RANGE BETWEEN INTERVAL 7 DAYS PRECEDING AND CURRENT ROW
     ) AS mean FROM df""").show()

## +---+----------+----------+------------------+       
## | id|     start|some_value|              mean|
## +---+----------+----------+------------------+
## |  1|2015-01-01|      20.0|              20.0|
## |  1|2015-01-06|      10.0|              15.0|
## |  1|2015-01-07|      25.0|18.333333333333332|
## |  1|2015-01-12|      30.0|21.666666666666668|
## |  2|2015-01-01|       5.0|               5.0|
## |  2|2015-01-03|      30.0|              17.5|
## |  2|2015-02-01|      20.0|              20.0|
## +---+----------+----------+------------------+

Spark < 2.3

As far as I know it is not possible directly neither in Spark nor Hive. Both require ORDER BY clause used with RANGE to be numeric. The closest thing I found is conversion to timestamp and operating on seconds. Assuming start column contains date type:

from pyspark.sql import Row

row = Row("id", "start", "some_value")
df = sc.parallelize([
    row(1, "2015-01-01", 20.0),
    row(1, "2015-01-06", 10.0),
    row(1, "2015-01-07", 25.0),
    row(1, "2015-01-12", 30.0),
    row(2, "2015-01-01", 5.0),
    row(2, "2015-01-03", 30.0),
    row(2, "2015-02-01", 20.0)
]).toDF().withColumn("start", col("start").cast("date"))

A small helper and window definition:

from pyspark.sql.window import Window
from pyspark.sql.functions import mean, col


# Hive timestamp is interpreted as UNIX timestamp in seconds*
days = lambda i: i * 86400 

Finally query:

w = (Window()
   .partitionBy(col("id"))
   .orderBy(col("start").cast("timestamp").cast("long"))
   .rangeBetween(-days(7), 0))

df.select(col("*"), mean("some_value").over(w).alias("mean")).show()

## +---+----------+----------+------------------+
## | id|     start|some_value|              mean|
## +---+----------+----------+------------------+
## |  1|2015-01-01|      20.0|              20.0|
## |  1|2015-01-06|      10.0|              15.0|
## |  1|2015-01-07|      25.0|18.333333333333332|
## |  1|2015-01-12|      30.0|21.666666666666668|
## |  2|2015-01-01|       5.0|               5.0|
## |  2|2015-01-03|      30.0|              17.5|
## |  2|2015-02-01|      20.0|              20.0|
## +---+----------+----------+------------------+

Far from pretty but works.


* Hive Language Manual, Types


Fantastic solution @zero323, if you want to operate with minutes instead of days as I have to, and you don't need to partition with id, so you only have to modify a simply part of the code as I show:

df.createOrReplaceTempView("df")
spark.sql(
    """SELECT *, sum(total) OVER (
        ORDER BY CAST(reading_date AS timestamp) 
        RANGE BETWEEN INTERVAL 45 minutes PRECEDING AND CURRENT ROW
     ) AS sum_total FROM df""").show()