Spark Window Functions - rangeBetween dates
I am having a Spark SQL DataFrame
with data and what I'm trying to get is all the rows preceding current row in a given date range. So for example I want to have all the rows from 7 days back preceding given row. I figured out I need to use a Window Function
like:
Window \
.partitionBy('id') \
.orderBy('start')
and here comes the problem. I want to have a rangeBetween
7 days, but there is nothing in the Spark docs I could find on this. Does Spark even provide such option? For now I'm just getting all the preceding rows with:
.rowsBetween(-sys.maxsize, 0)
but would like to achieve something like:
.rangeBetween("7 days", 0)
If anyone could help me on this one I'll be very grateful. Thanks in advance!
Spark >= 2.3
Since Spark 2.3 it is possible to use interval objects using SQL API, but the DataFrame
API support is still work in progress.
df.createOrReplaceTempView("df")
spark.sql(
"""SELECT *, mean(some_value) OVER (
PARTITION BY id
ORDER BY CAST(start AS timestamp)
RANGE BETWEEN INTERVAL 7 DAYS PRECEDING AND CURRENT ROW
) AS mean FROM df""").show()
## +---+----------+----------+------------------+
## | id| start|some_value| mean|
## +---+----------+----------+------------------+
## | 1|2015-01-01| 20.0| 20.0|
## | 1|2015-01-06| 10.0| 15.0|
## | 1|2015-01-07| 25.0|18.333333333333332|
## | 1|2015-01-12| 30.0|21.666666666666668|
## | 2|2015-01-01| 5.0| 5.0|
## | 2|2015-01-03| 30.0| 17.5|
## | 2|2015-02-01| 20.0| 20.0|
## +---+----------+----------+------------------+
Spark < 2.3
As far as I know it is not possible directly neither in Spark nor Hive. Both require ORDER BY
clause used with RANGE
to be numeric. The closest thing I found is conversion to timestamp and operating on seconds. Assuming start
column contains date
type:
from pyspark.sql import Row
row = Row("id", "start", "some_value")
df = sc.parallelize([
row(1, "2015-01-01", 20.0),
row(1, "2015-01-06", 10.0),
row(1, "2015-01-07", 25.0),
row(1, "2015-01-12", 30.0),
row(2, "2015-01-01", 5.0),
row(2, "2015-01-03", 30.0),
row(2, "2015-02-01", 20.0)
]).toDF().withColumn("start", col("start").cast("date"))
A small helper and window definition:
from pyspark.sql.window import Window
from pyspark.sql.functions import mean, col
# Hive timestamp is interpreted as UNIX timestamp in seconds*
days = lambda i: i * 86400
Finally query:
w = (Window()
.partitionBy(col("id"))
.orderBy(col("start").cast("timestamp").cast("long"))
.rangeBetween(-days(7), 0))
df.select(col("*"), mean("some_value").over(w).alias("mean")).show()
## +---+----------+----------+------------------+
## | id| start|some_value| mean|
## +---+----------+----------+------------------+
## | 1|2015-01-01| 20.0| 20.0|
## | 1|2015-01-06| 10.0| 15.0|
## | 1|2015-01-07| 25.0|18.333333333333332|
## | 1|2015-01-12| 30.0|21.666666666666668|
## | 2|2015-01-01| 5.0| 5.0|
## | 2|2015-01-03| 30.0| 17.5|
## | 2|2015-02-01| 20.0| 20.0|
## +---+----------+----------+------------------+
Far from pretty but works.
* Hive Language Manual, Types
Fantastic solution @zero323, if you want to operate with minutes instead of days as I have to, and you don't need to partition with id, so you only have to modify a simply part of the code as I show:
df.createOrReplaceTempView("df")
spark.sql(
"""SELECT *, sum(total) OVER (
ORDER BY CAST(reading_date AS timestamp)
RANGE BETWEEN INTERVAL 45 minutes PRECEDING AND CURRENT ROW
) AS sum_total FROM df""").show()