elliptic curve ${X^3+Y^3=AZ^3}$

Solution 1:

The Handbook of Elliptic Curves by Ian Connell is a wonderful reference.

http://webs.ucm.es/BUCM/mat/doc8354.pdf

(...after a quick search.)

In section [1.4 Cubic to Weierstrass: Nagell's algorithm] we have the steps of the algorithm that can be applied for any (non-singular) cubic to put it in Weierstraß form. (Characteristic not two, three.)

Then section 1.4.1 gives an application on Selmer curves:

Proposition 1.4.1: Consider the Selmer curve $$au^3+bv^3=c\ ,\qquad abc\ne 0\ ,$$ over some field $K$ of characteristic $\ne 2,3$. Then (after permuting variables) assume $$ \theta=\sqrt[3]{c/b}\in K\ . $$ Then the given Selmer curve is birationally equivalent to the curve $$y^2=x^3-432a^2b^ac^2$$ under the mutually inverse transformations $$ \begin{aligned} u &=-\frac{6b\theta^2x}{y-36abc}\ ,\\ v &=\theta\frac{y+36abc}{y-36abc}\ ,\\[2mm] x &=-\frac{12ab\theta^2u}{v-\theta}\ ,\\ y &=36abc\frac{v+\theta}{v-\theta}\ . \end{aligned} $$

In our case, we can for instance cyclically permute the given equation, rewrite it like $$ -AZ^3+X^3=-Y^3\ , $$ consider $a=-A$, $b=1$, $c=-1$, so that $\theta=\sqrt[3]{c/b}=-1\in\Bbb Q$, then use the transform in the affine space corresponding to $Y=1$: $$ \begin{aligned} Z &=\frac{6x}{y-36A}\ ,\\ X &=-\frac{y+36A}{y-36A}\ ,\ . \end{aligned} $$ and introducing in $-AZ^3+X^3=-1$ we get $$ -A\left(\frac{6x}{y-36A}\right)^3 -\left(\frac{y+36A}{y-36A}\right)^3 =-1\ . $$ Now multiply with the common denominator, and reshape equivalently as: $$ \begin{aligned} -A\cdot 6^3x^3 & -y^3 -3\cdot 6^2Ay^2 -3\cdot 6^4A^2y -6^6A^3 \\ = & -y^3 +3\cdot 6^2Ay^2 -3\cdot 6^4A^2y +6^6A^3\ . \end{aligned} $$ The cancellations can now be followed with bare eyes.