Choosing an attractive linear scale for a graph's Y Axis

Solution 1:

A long time ago I have written a graph module that covered this nicely. Digging in the grey mass gets the following:

  • Determine lower and upper bound of the data. (Beware of the special case where lower bound = upper bound!
  • Divide range into the required amount of ticks.
  • Round the tick range up into nice amounts.
  • Adjust the lower and upper bound accordingly.

Lets take your example:

15, 234, 140, 65, 90 with 10 ticks
  1. lower bound = 15
  2. upper bound = 234
  3. range = 234-15 = 219
  4. tick range = 21.9. This should be 25.0
  5. new lower bound = 25 * round(15/25) = 0
  6. new upper bound = 25 * round(1+235/25) = 250

So the range = 0,25,50,...,225,250

You can get the nice tick range with the following steps:

  1. divide by 10^x such that the result lies between 0.1 and 1.0 (including 0.1 excluding 1).
  2. translate accordingly:
    • 0.1 -> 0.1
    • <= 0.2 -> 0.2
    • <= 0.25 -> 0.25
    • <= 0.3 -> 0.3
    • <= 0.4 -> 0.4
    • <= 0.5 -> 0.5
    • <= 0.6 -> 0.6
    • <= 0.7 -> 0.7
    • <= 0.75 -> 0.75
    • <= 0.8 -> 0.8
    • <= 0.9 -> 0.9
    • <= 1.0 -> 1.0
  3. multiply by 10^x.

In this case, 21.9 is divided by 10^2 to get 0.219. This is <= 0.25 so we now have 0.25. Multiplied by 10^2 this gives 25.

Lets take a look at the same example with 8 ticks:

15, 234, 140, 65, 90 with 8 ticks
  1. lower bound = 15
  2. upper bound = 234
  3. range = 234-15 = 219
  4. tick range = 27.375
    1. Divide by 10^2 for 0.27375, translates to 0.3, which gives (multiplied by 10^2) 30.
  5. new lower bound = 30 * round(15/30) = 0
  6. new upper bound = 30 * round(1+235/30) = 240

Which give the result you requested ;-).

------ Added by KD ------

Here's code that achieves this algorithm without using lookup tables, etc...:

double range = ...;
int tickCount = ...;
double unroundedTickSize = range/(tickCount-1);
double x = Math.ceil(Math.log10(unroundedTickSize)-1);
double pow10x = Math.pow(10, x);
double roundedTickRange = Math.ceil(unroundedTickSize / pow10x) * pow10x;
return roundedTickRange;

Generally speaking, the number of ticks includes the bottom tick, so the actual y-axis segments are one less than the number of ticks.

Solution 2:

Here is a PHP example I am using. This function returns an array of pretty Y axis values that encompass the min and max Y values passed in. Of course, this routine could also be used for X axis values.

It allows you to "suggest" how many ticks you might want, but the routine will return what looks good. I have added some sample data and shown the results for these.

#!/usr/bin/php -q
<?php

function makeYaxis($yMin, $yMax, $ticks = 10)
{
  // This routine creates the Y axis values for a graph.
  //
  // Calculate Min amd Max graphical labels and graph
  // increments.  The number of ticks defaults to
  // 10 which is the SUGGESTED value.  Any tick value
  // entered is used as a suggested value which is
  // adjusted to be a 'pretty' value.
  //
  // Output will be an array of the Y axis values that
  // encompass the Y values.
  $result = array();
  // If yMin and yMax are identical, then
  // adjust the yMin and yMax values to actually
  // make a graph. Also avoids division by zero errors.
  if($yMin == $yMax)
  {
    $yMin = $yMin - 10;   // some small value
    $yMax = $yMax + 10;   // some small value
  }
  // Determine Range
  $range = $yMax - $yMin;
  // Adjust ticks if needed
  if($ticks < 2)
    $ticks = 2;
  else if($ticks > 2)
    $ticks -= 2;
  // Get raw step value
  $tempStep = $range/$ticks;
  // Calculate pretty step value
  $mag = floor(log10($tempStep));
  $magPow = pow(10,$mag);
  $magMsd = (int)($tempStep/$magPow + 0.5);
  $stepSize = $magMsd*$magPow;

  // build Y label array.
  // Lower and upper bounds calculations
  $lb = $stepSize * floor($yMin/$stepSize);
  $ub = $stepSize * ceil(($yMax/$stepSize));
  // Build array
  $val = $lb;
  while(1)
  {
    $result[] = $val;
    $val += $stepSize;
    if($val > $ub)
      break;
  }
  return $result;
}

// Create some sample data for demonstration purposes
$yMin = 60;
$yMax = 330;
$scale =  makeYaxis($yMin, $yMax);
print_r($scale);

$scale = makeYaxis($yMin, $yMax,5);
print_r($scale);

$yMin = 60847326;
$yMax = 73425330;
$scale =  makeYaxis($yMin, $yMax);
print_r($scale);
?>

Result output from sample data

# ./test1.php
Array
(
    [0] => 60
    [1] => 90
    [2] => 120
    [3] => 150
    [4] => 180
    [5] => 210
    [6] => 240
    [7] => 270
    [8] => 300
    [9] => 330
)

Array
(
    [0] => 0
    [1] => 90
    [2] => 180
    [3] => 270
    [4] => 360
)

Array
(
    [0] => 60000000
    [1] => 62000000
    [2] => 64000000
    [3] => 66000000
    [4] => 68000000
    [5] => 70000000
    [6] => 72000000
    [7] => 74000000
)

Solution 3:

Try this code. I've used it in a few charting scenarios and it works well. It's pretty fast too.

public static class AxisUtil
{
    public static float CalculateStepSize(float range, float targetSteps)
    {
        // calculate an initial guess at step size
        float tempStep = range/targetSteps;

        // get the magnitude of the step size
        float mag = (float)Math.Floor(Math.Log10(tempStep));
        float magPow = (float)Math.Pow(10, mag);

        // calculate most significant digit of the new step size
        float magMsd = (int)(tempStep/magPow + 0.5);

        // promote the MSD to either 1, 2, or 5
        if (magMsd > 5.0)
            magMsd = 10.0f;
        else if (magMsd > 2.0)
            magMsd = 5.0f;
        else if (magMsd > 1.0)
            magMsd = 2.0f;

        return magMsd*magPow;
    }
}

Solution 4:

Sounds like the caller doesn't tell you the ranges it wants.

So you are free to changed the end points until you get it nicely divisible by your label count.

Let's define "nice". I would call nice if the labels are off by:

1. 2^n, for some integer n. eg. ..., .25, .5, 1, 2, 4, 8, 16, ...
2. 10^n, for some integer n. eg. ..., .01, .1, 1, 10, 100
3. n/5 == 0, for some positive integer n, eg, 5, 10, 15, 20, 25, ...
4. n/2 == 0, for some positive integer n, eg, 2, 4, 6, 8, 10, 12, 14, ...

Find the max and min of your data series. Let's call these points:

min_point and max_point.

Now all you need to do is find is 3 values:

- start_label, where start_label < min_point and start_label is an integer
- end_label, where end_label > max_point and end_label is an integer
- label_offset, where label_offset is "nice"

that fit the equation:

(end_label - start_label)/label_offset == label_count

There are probably many solutions, so just pick one. Most of the time I bet you can set

start_label to 0

so just try different integer

end_label

until the offset is "nice"