Create new Dataframe with empty/null field values
Solution 1:
It is possible to use lit(null)
:
import org.apache.spark.sql.functions.{lit, udf}
case class Record(foo: Int, bar: String)
val df = Seq(Record(1, "foo"), Record(2, "bar")).toDF
val dfWithFoobar = df.withColumn("foobar", lit(null: String))
One problem here is that the column type is null
:
scala> dfWithFoobar.printSchema
root
|-- foo: integer (nullable = false)
|-- bar: string (nullable = true)
|-- foobar: null (nullable = true)
and it is not retained by the csv
writer. If it is a hard requirement you can cast column to the specific type (lets say String), with either DataType
import org.apache.spark.sql.types.StringType
df.withColumn("foobar", lit(null).cast(StringType))
or string description
df.withColumn("foobar", lit(null).cast("string"))
or use an UDF like this:
val getNull = udf(() => None: Option[String]) // Or some other type
df.withColumn("foobar", getNull()).printSchema
root
|-- foo: integer (nullable = false)
|-- bar: string (nullable = true)
|-- foobar: string (nullable = true)
A Python equivalent can be found here: Add an empty column to spark DataFrame
Solution 2:
Just to extend the perfect answer provided by @zero323, here's a solution which can be used starting from Spark 2.2.0.
import org.apache.spark.sql.functions.typedLit
df.withColumn("foobar", typedLit[Option[String]](None)).printSchema
root
|-- foo: integer (nullable = false)
|-- bar: string (nullable = true)
|-- foobar: string (nullable = true)
It's similar to the 3rd solution, but without using any UDF.