References on the theory of $2$-groups.
Many theorems about odd order $p$-groups fail miserably for $2$-groups. These can range from simple $2$-group exceptions (e.g. Frobenius complements can be either cyclic or generalized quaternion) to full blown analogs proved with vastly different, "$2$-groupy" techniques (e.g. Glauberman's $\text{ZJ}$ theorem vs. Stellmacher's results about $\Sigma_4$-free groups.) It's clear that $2$-groups in some way work fundamentally differently than other $p$-groups, and I would like to improve my understanding of exactly how.
Does anyone know of a comprehensive reference compiling important results about $2$-groups specifically? Is there a book or survey article about the theory of $2$-groups out there somewhere?
I would be especially interested in sources discussing differences in the internal structure of $2$-groups, rather than differences associated with their place in finite groups, such as my examples above. (And again, I don't need any references for $p$-groups in general - I've got plenty of those.)
There is a book on the theory of $p$-groups that covers $2$-groups well. Check http://web.mat.bham.ac.uk/D.A.Craven/docs/lectures/pgroups.pdf.