How to solve $\ x^{12}\equiv 87\pmod{101}$

Let us try to use Fermat's little theorem

We know $$x^{108}=(x^{12})^9\equiv 87^9\equiv 36\mod 101$$ implying $$x^8\equiv 36\mod 101$$

This gives us $$x^{104}=(x^8)^{13}\equiv 36^{13}\equiv 95\mod 101$$

implying $$x^4\equiv 95\mod 101$$ Not sure whether we can simplify even further.

The integer square roots of $95$ modulo $101$ are $14$ and $87$, the square roots of $14$ modulo $101$ are $32$ and $69$ (two solutions) and the square roots of $87$ modulo $101$ are $17$ and $84$ (the two other solutions).


Algorithmically let's use Shanks' baby giant step. The Remark below shows $2$ is a primitive root $({\rm ord}\,2 = 100)$ so $\,87 \equiv 2^{\large n}\,$ is solvable, e.g. by baby-giant step, i.e. we solve $\,87\cdot 2^{\large 10j}\equiv 2^{\large k}\,$ for $\,0\le j,k < 10 = \lceil\sqrt{100}\rceil,\,$ by repeatedly mutliplying $\,87\,$ by $\,2^{\large 10}\! \equiv 1010\!+\!14\equiv 14\,$ until we reach some $\,2^{\large k}.\,$ It requires $\,\color{#c00}4\,$ multiplications, i.e.

$$87\equiv-14 \overset{\large \times\color{#c00}{14}}\to 6\overset{\large\times\color{#c00}{14}}\to -17\overset{\large\times\color{#c00}{14}}\to -36\overset{\large\times\color{#c00}{14}}\to 1 $$

so $\ \smash[t]{87(\overbrace{2^{\large 10}}^{\large \color{#c00}{14}})^{\Large\color{#c00}4}}\equiv 1\overset{\large \times\, 2^{\LARGE 60}\!}\Longrightarrow 87\equiv 2^{\large 60}\!\equiv 2^{\large 12x}\!\!\!\iff$ $\! 12x\equiv 60\pmod{\!100}\!\iff\! n\equiv 5\pmod{\!25}$

Hence the solutions are $\,x\equiv 2^{\large 5}\!\equiv 32,\,\ x\equiv 2^{\large 30}\!\equiv 14^{\large 3}\!\equiv 17\,$ and their negatives $(\times\, 2^{\large 50}\!\equiv -1)$

Remark $ $ We skipped an optimization in order to better show the general method. Namely, at the start we already have $\,87\equiv -14\equiv -2^{\large 10}\equiv 2^{\large 60}\,$ by $\,-1\equiv 2^{\large 50},\,$ by $\,{\rm ord}\,2 = 100.\,$

To prove $\,{\rm ord}\,2 = 100,\,$ by the Order Test it suffices to show that $\,2^{\large 100/p}\!\not\equiv 1$ for all primes $\,p\mid 100,\,$ i.e. $\,2^{\large 20}\!\not\equiv 1,\, $ $2^{\large 50}\!\not\equiv 1.\,$ That's easy: $\,2^{\large 20}\!\equiv 14^{\large 2}\!\equiv 196\equiv -6,\,$ so $\,2^{\large 50}\!\equiv 14(-6)^{\large 2}\!\equiv 17(-6)\equiv -1$