Pandas sparse dataFrame to sparse matrix, without generating a dense matrix in memory
Is there a way to convert from a pandas.SparseDataFrame
to scipy.sparse.csr_matrix
, without generating a dense matrix in memory?
scipy.sparse.csr_matrix(df.values)
doesn't work as it generates a dense matrix which is cast to the csr_matrix
.
Thanks in advance!
Pandas 0.20.0+:
As of pandas version 0.20.0, released May 5, 2017, there is a one-liner for this:
from scipy import sparse
def sparse_df_to_csr(df):
return sparse.csr_matrix(df.to_coo())
This uses the new to_coo()
method.
Earlier Versions:
Building on Victor May's answer, here's a slightly faster implementation, but it only works if the entire SparseDataFrame
is sparse with all BlockIndex
(note: if it was created with get_dummies
, this will be the case).
Edit: I modified this so it will work with a non-zero fill value. CSR has no native non-zero fill value, so you will have to record it externally.
import numpy as np
import pandas as pd
from scipy import sparse
def sparse_BlockIndex_df_to_csr(df):
columns = df.columns
zipped_data = zip(*[(df[col].sp_values - df[col].fill_value,
df[col].sp_index.to_int_index().indices)
for col in columns])
data, rows = map(list, zipped_data)
cols = [np.ones_like(a)*i for (i,a) in enumerate(data)]
data_f = np.concatenate(data)
rows_f = np.concatenate(rows)
cols_f = np.concatenate(cols)
arr = sparse.coo_matrix((data_f, (rows_f, cols_f)),
df.shape, dtype=np.float64)
return arr.tocsr()
The answer by @Marigold does the trick, but it is slow due to accessing all elements in each column, including the zeros. Building on it, I wrote the following quick n' dirty code, which runs about 50x faster on a 1000x1000 matrix with a density of about 1%. My code also handles dense columns appropriately.
def sparse_df_to_array(df):
num_rows = df.shape[0]
data = []
row = []
col = []
for i, col_name in enumerate(df.columns):
if isinstance(df[col_name], pd.SparseSeries):
column_index = df[col_name].sp_index
if isinstance(column_index, BlockIndex):
column_index = column_index.to_int_index()
ix = column_index.indices
data.append(df[col_name].sp_values)
row.append(ix)
col.append(len(df[col_name].sp_values) * [i])
else:
data.append(df[col_name].values)
row.append(np.array(range(0, num_rows)))
col.append(np.array(num_rows * [i]))
data_f = np.concatenate(data)
row_f = np.concatenate(row)
col_f = np.concatenate(col)
arr = coo_matrix((data_f, (row_f, col_f)), df.shape, dtype=np.float64)
return arr.tocsr()
As of Pandas version 0.25 SparseSeries
and SparseDataFrame
are deprecated. DataFrames now support Sparse Dtypes for columns with sparse data. Sparse methods are available through sparse
accessor, so conversion one-liner now looks like this:
sparse_matrix = scipy.sparse.csr_matrix(df.sparse.to_coo())
Pandas docs talks about an experimental conversion to scipy sparse, SparseSeries.to_coo:
http://pandas-docs.github.io/pandas-docs-travis/sparse.html#interaction-with-scipy-sparse
================
edit - this is a special function from a multiindex, not a data frame. See the other answers for that. Note the difference in dates.
============
As of 0.20.0, there is a sdf.to_coo()
and a multiindex ss.to_coo()
. Since a sparse matrix is inherently 2d, it makes sense to require multiindex for the (effectively) 1d dataseries. While the dataframe can represent a table or 2d array.
When I first responded to this question this sparse dataframe/series feature was experimental (june 2015).